ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.06121
  4. Cited By
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities

Iterated Denoising Energy Matching for Sampling from Boltzmann Densities

9 February 2024
Tara Akhound-Sadegh
Jarrid Rector-Brooks
A. Bose
Sarthak Mittal
Pablo Lemos
Cheng-Hao Liu
Marcin Sendera
Siamak Ravanbakhsh
Gauthier Gidel
Yoshua Bengio
Nikolay Malkin
Alexander Tong
    DiffM
ArXivPDFHTML

Papers citing "Iterated Denoising Energy Matching for Sampling from Boltzmann Densities"

34 / 34 papers shown
Title
Energy-Based Coarse-Graining in Molecular Dynamics: A Flow-Based Framework Without Data
Energy-Based Coarse-Graining in Molecular Dynamics: A Flow-Based Framework Without Data
Maximilian Stupp
P. S. Koutsourelakis
38
0
0
29 Apr 2025
Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
Aaron J. Havens
Benjamin Kurt Miller
Bing Yan
Carles Domingo-Enrich
Anuroop Sriram
...
Brandon Amos
Brian Karrer
Xiang Fu
Guan-Horng Liu
Ricky T. Q. Chen
DiffM
41
0
0
16 Apr 2025
Potential Score Matching: Debiasing Molecular Structure Sampling with Potential Energy Guidance
Potential Score Matching: Debiasing Molecular Structure Sampling with Potential Energy Guidance
Liya Guo
Zun Wang
Chang-Shu Liu
J. Li
Pipi Hu
Yi Zhu
DiffM
41
0
0
18 Mar 2025
Sampling Decisions
Sampling Decisions
Michael Chertkov
Sungsoo Ahn
Hamidreza Behjoo
37
1
0
17 Mar 2025
Underdamped Diffusion Bridges with Applications to Sampling
Denis Blessing
Julius Berner
Lorenz Richter
Gerhard Neumann
DiffM
29
1
0
02 Mar 2025
End-To-End Learning of Gaussian Mixture Priors for Diffusion Sampler
Denis Blessing
Xiaogang Jia
Gerhard Neumann
DiffM
38
0
0
01 Mar 2025
Posterior Inference with Diffusion Models for High-dimensional Black-box Optimization
Taeyoung Yun
Kiyoung Om
Jaewoo Lee
Sujin Yun
Jinkyoo Park
38
1
0
24 Feb 2025
Value Gradient Sampler: Sampling as Sequential Decision Making
Value Gradient Sampler: Sampling as Sequential Decision Making
Sangwoong Yoon
Himchan Hwang
Hyeokju Jeong
Dong Kyu Shin
Che-Sang Park
Sehee Kwon
Frank C. Park
64
0
0
18 Feb 2025
In-Context Parametric Inference: Point or Distribution Estimators?
In-Context Parametric Inference: Point or Distribution Estimators?
Sarthak Mittal
Yoshua Bengio
Nikolay Malkin
Guillaume Lajoie
60
0
0
17 Feb 2025
Maximum Entropy Reinforcement Learning with Diffusion Policy
Maximum Entropy Reinforcement Learning with Diffusion Policy
Xiaoyi Dong
Jian Cheng
X. Zhang
31
0
0
17 Feb 2025
Neural Flow Samplers with Shortcut Models
Neural Flow Samplers with Shortcut Models
Wuhao Chen
Zijing Ou
Yingzhen Li
70
0
0
11 Feb 2025
From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
Julius Berner
Lorenz Richter
Marcin Sendera
Jarrid Rector-Brooks
Nikolay Malkin
OffRL
44
3
0
10 Jan 2025
Streaming Bayes GFlowNets
Streaming Bayes GFlowNets
Tiago da Silva
Daniel Augusto R. M. A. de Souza
Diego Mesquita
BDL
26
0
0
08 Nov 2024
Hamiltonian Score Matching and Generative Flows
Hamiltonian Score Matching and Generative Flows
Peter Holderrieth
Yilun Xu
Tommi Jaakkola
16
0
0
27 Oct 2024
Learned Reference-based Diffusion Sampling for multi-modal distributions
Learned Reference-based Diffusion Sampling for multi-modal distributions
Maxence Noble
Louis Grenioux
Marylou Gabrié
Alain Durmus
DiffM
23
2
0
25 Oct 2024
Training Neural Samplers with Reverse Diffusive KL Divergence
Training Neural Samplers with Reverse Diffusive KL Divergence
Jiajun He
Wenlin Chen
Mingtian Zhang
David Barber
José Miguel Hernández-Lobato
DiffM
26
4
0
16 Oct 2024
Physical Consistency Bridges Heterogeneous Data in Molecular Multi-Task
  Learning
Physical Consistency Bridges Heterogeneous Data in Molecular Multi-Task Learning
Yuxuan Ren
Dihan Zheng
Chang-Shu Liu
Peiran Jin
Yu Shi
Lin Huang
Jiyan He
Shengjie Luo
Tao Qin
Tie-Yan Liu
AI4CE
17
0
0
14 Oct 2024
Steering Masked Discrete Diffusion Models via Discrete Denoising
  Posterior Prediction
Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction
Jarrid Rector-Brooks
Mohsin Hasan
Zhangzhi Peng
Zachary Quinn
Chenghao Liu
...
Michael Bronstein
Yoshua Bengio
Pranam Chatterjee
Alexander Tong
Avishek Joey Bose
DiffM
37
6
0
10 Oct 2024
NETS: A Non-Equilibrium Transport Sampler
NETS: A Non-Equilibrium Transport Sampler
M. S. Albergo
Eric Vanden-Eijnden
DiffM
43
7
0
03 Oct 2024
BNEM: A Boltzmann Sampler Based on Bootstrapped Noised Energy Matching
BNEM: A Boltzmann Sampler Based on Bootstrapped Noised Energy Matching
RuiKang OuYang
Bo Qiang
José Miguel Hernández-Lobato
76
3
0
15 Sep 2024
Iterated Energy-based Flow Matching for Sampling from Boltzmann
  Densities
Iterated Energy-based Flow Matching for Sampling from Boltzmann Densities
Dongyeop Woo
Sungsoo Ahn
20
5
0
29 Aug 2024
A Practical Diffusion Path for Sampling
A Practical Diffusion Path for Sampling
Omar Chehab
Anna Korba
DiffM
16
1
0
20 Jun 2024
Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for
  Sampling
Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for Sampling
Denis Blessing
Xiaogang Jia
Johannes Esslinger
Francisco Vargas
Gerhard Neumann
34
15
0
11 Jun 2024
A Diffusion Model Framework for Unsupervised Neural Combinatorial
  Optimization
A Diffusion Model Framework for Unsupervised Neural Combinatorial Optimization
Sebastian Sanokowski
Sepp Hochreiter
Sebastian Lehner
19
16
0
03 Jun 2024
Amortizing intractable inference in diffusion models for vision, language, and control
Amortizing intractable inference in diffusion models for vision, language, and control
S. Venkatraman
Moksh Jain
Luca Scimeca
Minsu Kim
Marcin Sendera
...
Alexandre Adam
Jarrid Rector-Brooks
Yoshua Bengio
Glen Berseth
Nikolay Malkin
54
24
0
31 May 2024
Model-Based Diffusion for Trajectory Optimization
Model-Based Diffusion for Trajectory Optimization
Chaoyi Pan
Zeji Yi
Guanya Shi
Guannan Qu
30
2
0
28 May 2024
Markovian Flow Matching: Accelerating MCMC with Continuous Normalizing
  Flows
Markovian Flow Matching: Accelerating MCMC with Continuous Normalizing Flows
A. Cabezas
Louis Sharrock
Christopher Nemeth
26
0
0
23 May 2024
Sequential transport maps using SoS density estimation and
  $α$-divergences
Sequential transport maps using SoS density estimation and ααα-divergences
Benjamin Zanger
Tiangang Cui
Martin Schreiber
O. Zahm
20
0
0
27 Feb 2024
Target Score Matching
Target Score Matching
Valentin De Bortoli
M. Hutchinson
Peter Wirnsberger
Arnaud Doucet
DiffM
20
17
0
13 Feb 2024
Denoising Diffusion Variational Inference: Diffusion Models as Expressive Variational Posteriors
Denoising Diffusion Variational Inference: Diffusion Models as Expressive Variational Posteriors
Wasu Top Piriyakulkij
Yingheng Wang
Volodymyr Kuleshov
DiffM
17
1
0
05 Jan 2024
GFlowNets and variational inference
GFlowNets and variational inference
Nikolay Malkin
Salem Lahlou
T. Deleu
Xu Ji
J. E. Hu
Katie Everett
Dinghuai Zhang
Yoshua Bengio
BDL
127
77
0
02 Oct 2022
Rectified Flow: A Marginal Preserving Approach to Optimal Transport
Rectified Flow: A Marginal Preserving Approach to Optimal Transport
Qiang Liu
OT
109
83
0
29 Sep 2022
Equivariant Finite Normalizing Flows
Equivariant Finite Normalizing Flows
A. Bose
Marcus A. Brubaker
I. Kobyzev
DRL
11
8
0
16 Oct 2021
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
127
3,260
0
09 Jun 2012
1