ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.07043
  4. Cited By
A Tale of Tails: Model Collapse as a Change of Scaling Laws

A Tale of Tails: Model Collapse as a Change of Scaling Laws

10 February 2024
Elvis Dohmatob
Yunzhen Feng
Pu Yang
Francois Charton
Julia Kempe
ArXivPDFHTML

Papers citing "A Tale of Tails: Model Collapse as a Change of Scaling Laws"

47 / 47 papers shown
Title
Recursive Training Loops in LLMs: How training data properties modulate distribution shift in generated data?
Recursive Training Loops in LLMs: How training data properties modulate distribution shift in generated data?
Grgur Kovač
Jérémy Perez
Rémy Portelas
Peter Ford Dominey
Pierre-Yves Oudeyer
33
0
0
04 Apr 2025
Position: Model Collapse Does Not Mean What You Think
Position: Model Collapse Does Not Mean What You Think
Rylan Schaeffer
Joshua Kazdan
Alvan Caleb Arulandu
Sanmi Koyejo
51
0
0
05 Mar 2025
LLM as a Broken Telephone: Iterative Generation Distorts Information
LLM as a Broken Telephone: Iterative Generation Distorts Information
Amr Mohamed
Mingmeng Geng
Michalis Vazirgiannis
Guokan Shang
57
1
0
27 Feb 2025
A Theoretical Perspective: How to Prevent Model Collapse in Self-consuming Training Loops
A Theoretical Perspective: How to Prevent Model Collapse in Self-consuming Training Loops
Shi Fu
Yingjie Wang
Yuzhu Chen
Xinmei Tian
Dacheng Tao
48
1
0
26 Feb 2025
Mitigating Tail Narrowing in LLM Self-Improvement via Socratic-Guided Sampling
Mitigating Tail Narrowing in LLM Self-Improvement via Socratic-Guided Sampling
Yiwen Ding
Zhiheng Xi
Wei He
Zhuoyuan Li
Yitao Zhai
Xiaowei Shi
Xunliang Cai
Tao Gui
Qi Zhang
Xuanjing Huang
LRM
59
3
0
24 Feb 2025
Machine-generated text detection prevents language model collapse
Machine-generated text detection prevents language model collapse
George Drayson
Emine Yilmaz
Vasileios Lampos
DeLMO
57
0
0
21 Feb 2025
GiFT: Gibbs Fine-Tuning for Code Generation
GiFT: Gibbs Fine-Tuning for Code Generation
Haochen Li
Wanjin Feng
Xin Zhou
Zhiqi Shen
SyDa
68
1
0
17 Feb 2025
Escaping Collapse: The Strength of Weak Data for Large Language Model Training
Escaping Collapse: The Strength of Weak Data for Large Language Model Training
Kareem Amin
Sara Babakniya
Alex Bie
Weiwei Kong
Umar Syed
Sergei Vassilvitskii
68
1
0
13 Feb 2025
Self-Improving Transformers Overcome Easy-to-Hard and Length Generalization Challenges
Self-Improving Transformers Overcome Easy-to-Hard and Length Generalization Challenges
Nayoung Lee
Ziyang Cai
Avi Schwarzschild
Kangwook Lee
Dimitris Papailiopoulos
ReLM
VLM
LRM
AI4CE
73
4
0
03 Feb 2025
Spend Wisely: Maximizing Post-Training Gains in Iterative Synthetic Data Boostrapping
Spend Wisely: Maximizing Post-Training Gains in Iterative Synthetic Data Boostrapping
Pu Yang
Yunzhen Feng
Ziyuan Chen
Yuhang Wu
Zhuoyuan Li
DiffM
96
0
0
31 Jan 2025
Diverse Preference Optimization
Diverse Preference Optimization
Jack Lanchantin
Angelica Chen
S. Dhuliawala
Ping Yu
Jason Weston
Sainbayar Sukhbaatar
Ilia Kulikov
88
4
0
30 Jan 2025
Rate of Model Collapse in Recursive Training
Rate of Model Collapse in Recursive Training
A. Suresh
A. Thangaraj
Aditya Nanda Kishore Khandavally
SyDa
25
5
0
23 Dec 2024
Loss-to-Loss Prediction: Scaling Laws for All Datasets
Loss-to-Loss Prediction: Scaling Laws for All Datasets
David Brandfonbrener
Nikhil Anand
Nikhil Vyas
Eran Malach
Sham Kakade
77
3
0
19 Nov 2024
Zipfian Whitening
Zipfian Whitening
Sho Yokoi
Han Bao
Hiroto Kurita
Hidetoshi Shimodaira
27
0
0
01 Nov 2024
Universality of the $π^2/6$ Pathway in Avoiding Model Collapse
Universality of the π2/6π^2/6π2/6 Pathway in Avoiding Model Collapse
Apratim Dey
D. Donoho
50
5
0
30 Oct 2024
Shallow Diffuse: Robust and Invisible Watermarking through
  Low-Dimensional Subspaces in Diffusion Models
Shallow Diffuse: Robust and Invisible Watermarking through Low-Dimensional Subspaces in Diffusion Models
Wenda Li
Huijie Zhang
Qing Qu
WIGM
41
0
0
28 Oct 2024
Not All LLM-Generated Data Are Equal: Rethinking Data Weighting in Text Classification
Not All LLM-Generated Data Are Equal: Rethinking Data Weighting in Text Classification
Hsun-Yu Kuo
Yin-Hsiang Liao
Yu-Chieh Chao
Wei-Yun Ma
Pu-Jen Cheng
SyDa
43
2
0
28 Oct 2024
Collapse or Thrive? Perils and Promises of Synthetic Data in a Self-Generating World
Collapse or Thrive? Perils and Promises of Synthetic Data in a Self-Generating World
Joshua Kazdan
Rylan Schaeffer
Apratim Dey
Matthias Gerstgrasser
Rafael Rafailov
D. Donoho
Sanmi Koyejo
45
11
0
22 Oct 2024
Bias Amplification: Large Language Models as Increasingly Biased Media
Bias Amplification: Large Language Models as Increasingly Biased Media
Ze Wang
Zekun Wu
Jeremy Zhang
Navya Jain
Xin Guan
Skylar Lu
Saloni Gupta
Adriano Soares Koshiyama
37
0
0
19 Oct 2024
Beyond Oversmoothing: Evaluating DDPM and MSE for Scalable Speech
  Synthesis in ASR
Beyond Oversmoothing: Evaluating DDPM and MSE for Scalable Speech Synthesis in ASR
Christoph Minixhofer
Ondˇrej Klejch
Peter Bell
19
0
0
16 Oct 2024
Analyzing Neural Scaling Laws in Two-Layer Networks with Power-Law Data
  Spectra
Analyzing Neural Scaling Laws in Two-Layer Networks with Power-Law Data Spectra
Roman Worschech
B. Rosenow
36
0
0
11 Oct 2024
Emergent properties with repeated examples
Emergent properties with repeated examples
Francois Charton
Julia Kempe
AIMat
18
2
0
09 Oct 2024
Let's Ask GNN: Empowering Large Language Model for Graph In-Context Learning
Let's Ask GNN: Empowering Large Language Model for Graph In-Context Learning
Zhengyu Hu
Yichuan Li
Zhengyu Chen
J. Wang
Han Liu
Kyumin Lee
Kaize Ding
GNN
101
1
0
09 Oct 2024
O1 Replication Journey: A Strategic Progress Report -- Part 1
O1 Replication Journey: A Strategic Progress Report -- Part 1
Yiwei Qin
Xuefeng Li
Haoyang Zou
Yixiu Liu
Shijie Xia
...
Yixin Ye
Weizhe Yuan
Hector Liu
Y. Li
Pengfei Liu
VLM
37
67
0
08 Oct 2024
Strong Model Collapse
Strong Model Collapse
Elvis Dohmatob
Yunzhen Feng
Arjun Subramonian
Julia Kempe
26
9
0
07 Oct 2024
Scaling Optimal LR Across Token Horizons
Scaling Optimal LR Across Token Horizons
Johan Bjorck
Alon Benhaim
Vishrav Chaudhary
Furu Wei
Xia Song
46
4
0
30 Sep 2024
Self-Improving Diffusion Models with Synthetic Data
Self-Improving Diffusion Models with Synthetic Data
Sina Alemohammad
Ahmed Imtiaz Humayun
S. Agarwal
John Collomosse
Richard G. Baraniuk
23
10
0
29 Aug 2024
A survey on the impact of AI-based recommenders on human behaviours:
  methodologies, outcomes and future directions
A survey on the impact of AI-based recommenders on human behaviours: methodologies, outcomes and future directions
Luca Pappalardo
Emanuele Ferragina
Salvatore Citraro
Giuliano Cornacchia
M. Nanni
...
D. Gambetta
Giovanni Mauro
Virginia Morini
Valentina Pansanella
D. Pedreschi
39
8
0
29 Jun 2024
Scaling Synthetic Data Creation with 1,000,000,000 Personas
Scaling Synthetic Data Creation with 1,000,000,000 Personas
Tao Ge
Xin Chan
Dian Yu
Haitao Mi
Dong Yu
Dong Yu
SyDa
106
89
0
28 Jun 2024
How Stable is Stable Diffusion under Recursive InPainting (RIP)?
How Stable is Stable Diffusion under Recursive InPainting (RIP)?
Javier Conde
Miguel González
Gonzalo Martínez
Fernando Moral
Elena Merino-Gómez
Pedro Reviriego
DiffM
21
3
0
27 Jun 2024
Understanding Hallucinations in Diffusion Models through Mode
  Interpolation
Understanding Hallucinations in Diffusion Models through Mode Interpolation
Sumukh K. Aithal
Pratyush Maini
Zachary Chase Lipton
J. Zico Kolter
DiffM
40
18
0
13 Jun 2024
Scaling Laws in Linear Regression: Compute, Parameters, and Data
Scaling Laws in Linear Regression: Compute, Parameters, and Data
Licong Lin
Jingfeng Wu
Sham Kakade
Peter L. Bartlett
Jason D. Lee
LRM
28
15
0
12 Jun 2024
Beyond Model Collapse: Scaling Up with Synthesized Data Requires
  Reinforcement
Beyond Model Collapse: Scaling Up with Synthesized Data Requires Reinforcement
Yunzhen Feng
Elvis Dohmatob
Pu Yang
Francois Charton
Julia Kempe
39
17
0
11 Jun 2024
Is Synthetic Data all We Need? Benchmarking the Robustness of Models
  Trained with Synthetic Images
Is Synthetic Data all We Need? Benchmarking the Robustness of Models Trained with Synthetic Images
Krishnakant Singh
Thanush Navaratnam
Jannik Holmer
Simone Schaub-Meyer
Stefan Roth
DiffM
33
18
0
30 May 2024
Large Language Models Can Self-Improve At Web Agent Tasks
Large Language Models Can Self-Improve At Web Agent Tasks
Ajay Patel
M. Hofmarcher
Claudiu Leoveanu-Condrei
Marius-Constantin Dinu
Chris Callison-Burch
Sepp Hochreiter
LLMAG
21
23
0
30 May 2024
Infinite-Dimensional Feature Interaction
Infinite-Dimensional Feature Interaction
Chenhui Xu
Fuxun Yu
Maoliang Li
Zihao Zheng
Zirui Xu
Jinjun Xiong
Xiang Chen
27
1
0
22 May 2024
Age-Dependent Analysis and Stochastic Generation of Child-Directed
  Speech
Age-Dependent Analysis and Stochastic Generation of Child-Directed Speech
Okko Rasanen
Daniil Kocharov
25
0
0
13 May 2024
How Bad is Training on Synthetic Data? A Statistical Analysis of
  Language Model Collapse
How Bad is Training on Synthetic Data? A Statistical Analysis of Language Model Collapse
M. Seddik
Suei-Wen Chen
Soufiane Hayou
Pierre Youssef
Merouane Debbah
26
29
0
07 Apr 2024
AI and the Problem of Knowledge Collapse
AI and the Problem of Knowledge Collapse
Andrew J. Peterson
33
16
0
04 Apr 2024
Researchy Questions: A Dataset of Multi-Perspective, Decompositional
  Questions for LLM Web Agents
Researchy Questions: A Dataset of Multi-Perspective, Decompositional Questions for LLM Web Agents
Corby Rosset
Ho-Lam Chung
Guanghui Qin
Ethan C. Chau
Zhuo Feng
Ahmed Hassan Awadallah
Jennifer Neville
Nikhil Rao
22
10
0
27 Feb 2024
Model Collapse Demystified: The Case of Regression
Model Collapse Demystified: The Case of Regression
Elvis Dohmatob
Yunzhen Feng
Julia Kempe
32
32
0
12 Feb 2024
Human-AI Coevolution
Human-AI Coevolution
D. Pedreschi
Luca Pappalardo
Emanuele Ferragina
R. Baeza-Yates
Albert-László Barabási
...
P. Lukowicz
A. Passarella
Alex Pentland
John Shawe-Taylor
Alessandro Vespignani
17
14
0
23 Jun 2023
Will we run out of data? Limits of LLM scaling based on human-generated
  data
Will we run out of data? Limits of LLM scaling based on human-generated data
Pablo Villalobos
A. Ho
J. Sevilla
T. Besiroglu
Lennart Heim
Marius Hobbhahn
ALM
28
106
0
26 Oct 2022
Zero-Shot Text-to-Image Generation
Zero-Shot Text-to-Image Generation
Aditya A. Ramesh
Mikhail Pavlov
Gabriel Goh
Scott Gray
Chelsea Voss
Alec Radford
Mark Chen
Ilya Sutskever
VLM
253
4,735
0
24 Feb 2021
Learning Curve Theory
Learning Curve Theory
Marcus Hutter
128
56
0
08 Feb 2021
Spectrum Dependent Learning Curves in Kernel Regression and Wide Neural
  Networks
Spectrum Dependent Learning Curves in Kernel Regression and Wide Neural Networks
Blake Bordelon
Abdulkadir Canatar
C. Pehlevan
131
199
0
07 Feb 2020
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
226
4,424
0
23 Jan 2020
1