ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.09264
  4. Cited By
UR2M: Uncertainty and Resource-Aware Event Detection on Microcontrollers

UR2M: Uncertainty and Resource-Aware Event Detection on Microcontrollers

14 February 2024
Hong Jia
Young D. Kwon
Dong Ma
Nhat Pham
Lorena Qendro
Tam N. Vu
Cecilia Mascolo
ArXivPDFHTML

Papers citing "UR2M: Uncertainty and Resource-Aware Event Detection on Microcontrollers"

7 / 7 papers shown
Title
Efficient and Personalized Mobile Health Event Prediction via Small
  Language Models
Efficient and Personalized Mobile Health Event Prediction via Small Language Models
Xin Wang
Ting Dang
V. Kostakos
Hong Jia
26
2
0
17 Sep 2024
Towards certifiable AI in aviation: landscape, challenges, and
  opportunities
Towards certifiable AI in aviation: landscape, challenges, and opportunities
Hymalai Bello
Daniel Geißler
L. Ray
Stefan Muller-Divéky
Peter Muller
Shannon Kittrell
Mengxi Liu
Bo Zhou
Paul Lukowicz
27
1
0
13 Sep 2024
Earables for Detection of Bruxism: a Feasibility Study
Earables for Detection of Bruxism: a Feasibility Study
E. Bondareva
Elín Rós Hauksdóttir
Cecilia Mascolo
OOD
13
5
0
09 Aug 2021
TensorFlow Lite Micro: Embedded Machine Learning on TinyML Systems
TensorFlow Lite Micro: Embedded Machine Learning on TinyML Systems
R. David
Jared Duke
Advait Jain
Vijay Janapa Reddi
Nat Jeffries
...
Meghna Natraj
Shlomi Regev
Rocky Rhodes
Tiezhen Wang
Pete Warden
107
465
0
17 Oct 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
273
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
SMOTE: Synthetic Minority Over-sampling Technique
SMOTE: Synthetic Minority Over-sampling Technique
Nitesh V. Chawla
Kevin W. Bowyer
Lawrence Hall
W. Kegelmeyer
AI4TS
163
25,247
0
09 Jun 2011
1