ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.11223
  4. Cited By
HEAL: Brain-inspired Hyperdimensional Efficient Active Learning

HEAL: Brain-inspired Hyperdimensional Efficient Active Learning

17 February 2024
Yang Ni
Zhuowen Zou
Wenjun Huang
Hanning Chen
William Youngwoo Chung
Samuel Cho
R. Krishnan
Pietro Mercati
Mohsen Imani
ArXivPDFHTML

Papers citing "HEAL: Brain-inspired Hyperdimensional Efficient Active Learning"

5 / 5 papers shown
Title
Torchhd: An Open Source Python Library to Support Research on
  Hyperdimensional Computing and Vector Symbolic Architectures
Torchhd: An Open Source Python Library to Support Research on Hyperdimensional Computing and Vector Symbolic Architectures
Mike Heddes
Igor O. Nunes
Pere Vergés
Denis Kleyko
Danny Abraham
T. Givargis
Alexandru Nicolau
A. Veidenbaum
31
20
0
18 May 2022
Efficient Off-Policy Reinforcement Learning via Brain-Inspired Computing
Efficient Off-Policy Reinforcement Learning via Brain-Inspired Computing
Yang Ni
Danny Abraham
Mariam Issa
Yeseong Kim
Pietro Mercati
Mohsen Imani
OffRL
30
11
0
14 May 2022
Deep Active Learning in Remote Sensing for data efficient Change
  Detection
Deep Active Learning in Remote Sensing for data efficient Change Detection
Vít Ruzicka
Stefano Dáronco
Jan Dirk Wegner
Konrad Schindler
29
29
0
25 Aug 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
270
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
279
9,136
0
06 Jun 2015
1