Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2402.12789
Cited By
Fairness Without Harm: An Influence-Guided Active Sampling Approach
20 February 2024
Jinlong Pang
Jialu Wang
Zhaowei Zhu
Yuanshun Yao
Chen Qian
Yang Liu
TDI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Fairness Without Harm: An Influence-Guided Active Sampling Approach"
7 / 7 papers shown
Title
Active Finetuning: Exploiting Annotation Budget in the Pretraining-Finetuning Paradigm
Yichen Xie
Han Lu
Junchi Yan
Xiaokang Yang
M. Tomizuka
Wei Zhan
31
29
0
25 Mar 2023
Bias Mimicking: A Simple Sampling Approach for Bias Mitigation
Maan Qraitem
Kate Saenko
Bryan A. Plummer
43
33
0
30 Sep 2022
Achieving Fairness at No Utility Cost via Data Reweighing with Influence
Peizhao Li
Hongfu Liu
TDI
25
45
0
01 Feb 2022
The Rich Get Richer: Disparate Impact of Semi-Supervised Learning
Zhaowei Zhu
Tianyi Luo
Yang Liu
148
39
0
12 Oct 2021
The Fairness-Accuracy Pareto Front
Susan Wei
Marc Niethammer
FaML
26
33
0
25 Aug 2020
Improving fairness in machine learning systems: What do industry practitioners need?
Kenneth Holstein
Jennifer Wortman Vaughan
Hal Daumé
Miroslav Dudík
Hanna M. Wallach
FaML
HAI
189
730
0
13 Dec 2018
SMOTE: Synthetic Minority Over-sampling Technique
Nitesh V. Chawla
Kevin W. Bowyer
Lawrence Hall
W. Kegelmeyer
AI4TS
148
25,150
0
09 Jun 2011
1