ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.12821
  4. Cited By
Identifying Factual Inconsistencies in Summaries: Grounding Model
  Inference via Task Taxonomy

Identifying Factual Inconsistencies in Summaries: Grounding Model Inference via Task Taxonomy

20 February 2024
Liyan Xu
Zhenlin Su
Mo Yu
Jin Xu
Jinho D. Choi
Jie Zhou
Fei Liu
    HILM
ArXivPDFHTML

Papers citing "Identifying Factual Inconsistencies in Summaries: Grounding Model Inference via Task Taxonomy"

5 / 5 papers shown
Title
How Far are We from Robust Long Abstractive Summarization?
How Far are We from Robust Long Abstractive Summarization?
Huan Yee Koh
Jiaxin Ju
He Zhang
Ming Liu
Shirui Pan
HILM
23
39
0
30 Oct 2022
SQuALITY: Building a Long-Document Summarization Dataset the Hard Way
SQuALITY: Building a Long-Document Summarization Dataset the Hard Way
Alex Jinpeng Wang
Richard Yuanzhe Pang
Angelica Chen
Jason Phang
Samuel R. Bowman
72
44
0
23 May 2022
Hallucinated but Factual! Inspecting the Factuality of Hallucinations in
  Abstractive Summarization
Hallucinated but Factual! Inspecting the Factuality of Hallucinations in Abstractive Summarization
Mengyao Cao
Yue Dong
Jackie C.K. Cheung
HILM
170
144
0
30 Aug 2021
Understanding Factuality in Abstractive Summarization with FRANK: A
  Benchmark for Factuality Metrics
Understanding Factuality in Abstractive Summarization with FRANK: A Benchmark for Factuality Metrics
Artidoro Pagnoni
Vidhisha Balachandran
Yulia Tsvetkov
HILM
215
305
0
27 Apr 2021
Entity-level Factual Consistency of Abstractive Text Summarization
Entity-level Factual Consistency of Abstractive Text Summarization
Feng Nan
Ramesh Nallapati
Zhiguo Wang
Cicero Nogueira dos Santos
Henghui Zhu
Dejiao Zhang
Kathleen McKeown
Bing Xiang
HILM
142
156
0
18 Feb 2021
1