ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.13412
  4. Cited By
Scaling physics-informed hard constraints with mixture-of-experts

Scaling physics-informed hard constraints with mixture-of-experts

20 February 2024
N. Chalapathi
Yiheng Du
Aditi Krishnapriyan
    AI4CE
ArXivPDFHTML

Papers citing "Scaling physics-informed hard constraints with mixture-of-experts"

10 / 10 papers shown
Title
Solving Token Gradient Conflict in Mixture-of-Experts for Large Vision-Language Model
Solving Token Gradient Conflict in Mixture-of-Experts for Large Vision-Language Model
Longrong Yang
Dong Shen
Chaoxiang Cai
Fan Yang
Size Li
Di Zhang
Xi Li
MoE
37
2
0
28 Jun 2024
Robust Biharmonic Skinning Using Geometric Fields
Robust Biharmonic Skinning Using Geometric Fields
Ana Dodik
Vincent Sitzmann
Justin Solomon
Oded Stein
3DH
42
2
0
01 Jun 2024
Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling
Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling
Wanghan Xu
Fenghua Ling
Wenlong Zhang
Tao Han
Hao Chen
Wanli Ouyang
Lei Bai
AI4CE
21
3
0
22 May 2024
Learning Neural Constitutive Laws From Motion Observations for
  Generalizable PDE Dynamics
Learning Neural Constitutive Laws From Motion Observations for Generalizable PDE Dynamics
Pingchuan Ma
Peter Yichen Chen
B. Deng
J. Tenenbaum
Tao Du
Chuang Gan
Wojciech Matusik
PINN
AI4CE
74
15
0
27 Apr 2023
Neural Conservation Laws: A Divergence-Free Perspective
Neural Conservation Laws: A Divergence-Free Perspective
Jack Richter-Powell
Y. Lipman
Ricky T. Q. Chen
21
48
0
04 Oct 2022
Differentiable Physics: A Position Piece
Differentiable Physics: A Position Piece
Bharath Ramsundar
Dilip Krishnamurthy
V. Viswanathan
PINN
AI4CE
30
8
0
14 Sep 2021
Physics-informed neural networks with hard constraints for inverse
  design
Physics-informed neural networks with hard constraints for inverse design
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
39
365
0
09 Feb 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
197
2,254
0
18 Oct 2020
Input Convex Neural Networks
Input Convex Neural Networks
Brandon Amos
Lei Xu
J. Zico Kolter
163
496
0
22 Sep 2016
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
273
2,696
0
15 Sep 2016
1