ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.15162
  4. Cited By
Entity-level Factual Adaptiveness of Fine-tuning based Abstractive
  Summarization Models

Entity-level Factual Adaptiveness of Fine-tuning based Abstractive Summarization Models

23 February 2024
Jongyoon Song
Nohil Park
Bongkyu Hwang
Jaewoong Yun
Seongho Joe
Youngjune Gwon
Sungroh Yoon
    KELM
    HILM
ArXivPDFHTML

Papers citing "Entity-level Factual Adaptiveness of Fine-tuning based Abstractive Summarization Models"

7 / 7 papers shown
Title
Correcting Diverse Factual Errors in Abstractive Summarization via
  Post-Editing and Language Model Infilling
Correcting Diverse Factual Errors in Abstractive Summarization via Post-Editing and Language Model Infilling
Vidhisha Balachandran
Hannaneh Hajishirzi
William W. Cohen
Yulia Tsvetkov
HILM
KELM
82
46
0
22 Oct 2022
Counterfactual Data Augmentation improves Factuality of Abstractive
  Summarization
Counterfactual Data Augmentation improves Factuality of Abstractive Summarization
Dheeraj Rajagopal
Siamak Shakeri
Cicero Nogueira dos Santos
Eduard H. Hovy
Chung-Ching Chang
HILM
72
10
0
25 May 2022
Training language models to follow instructions with human feedback
Training language models to follow instructions with human feedback
Long Ouyang
Jeff Wu
Xu Jiang
Diogo Almeida
Carroll L. Wainwright
...
Amanda Askell
Peter Welinder
Paul Christiano
Jan Leike
Ryan J. Lowe
OSLM
ALM
303
11,881
0
04 Mar 2022
Entity-Based Knowledge Conflicts in Question Answering
Entity-Based Knowledge Conflicts in Question Answering
Shayne Longpre
Kartik Perisetla
Anthony Chen
Nikhil Ramesh
Chris DuBois
Sameer Singh
HILM
241
236
0
10 Sep 2021
The Factual Inconsistency Problem in Abstractive Text Summarization: A
  Survey
The Factual Inconsistency Problem in Abstractive Text Summarization: A Survey
Yi-Chong Huang
Xiachong Feng
Xiaocheng Feng
Bing Qin
HILM
128
104
0
30 Apr 2021
Entity-level Factual Consistency of Abstractive Text Summarization
Entity-level Factual Consistency of Abstractive Text Summarization
Feng Nan
Ramesh Nallapati
Zhiguo Wang
Cicero Nogueira dos Santos
Henghui Zhu
Dejiao Zhang
Kathleen McKeown
Bing Xiang
HILM
142
157
0
18 Feb 2021
Teaching Machines to Read and Comprehend
Teaching Machines to Read and Comprehend
Karl Moritz Hermann
Tomás Kociský
Edward Grefenstette
L. Espeholt
W. Kay
Mustafa Suleyman
Phil Blunsom
170
3,508
0
10 Jun 2015
1