ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.15255
  4. Cited By
Optimal Transport for Structure Learning Under Missing Data

Optimal Transport for Structure Learning Under Missing Data

23 February 2024
Vy Vo
He Zhao
Trung Le
Edwin V. Bonilla
Dinh Q. Phung
    CML
ArXivPDFHTML

Papers citing "Optimal Transport for Structure Learning Under Missing Data"

12 / 12 papers shown
Title
Robust Simulation-Based Inference under Missing Data via Neural Processes
Yogesh Verma
Ayush Bharti
Vikas K. Garg
63
0
0
03 Mar 2025
LLM Reading Tea Leaves: Automatically Evaluating Topic Models with Large Language Models
LLM Reading Tea Leaves: Automatically Evaluating Topic Models with Large Language Models
Xiaohao Yang
He Zhao
Dinh Q. Phung
Wray L. Buntine
Lan Du
ALM
ELM
66
2
0
13 Jun 2024
Bayesian Vector AutoRegression with Factorised Granger-Causal Graphs
Bayesian Vector AutoRegression with Factorised Granger-Causal Graphs
He Zhao
V. Kitsios
Terry O'Kane
Edwin V. Bonilla
CML
24
1
0
06 Feb 2024
Variational DAG Estimation via State Augmentation With Stochastic
  Permutations
Variational DAG Estimation via State Augmentation With Stochastic Permutations
Edwin V. Bonilla
P. Elinas
He Zhao
Maurizio Filippone
V. Kitsios
Terry O'Kane
CML
35
3
0
04 Feb 2024
DAGMA: Learning DAGs via M-matrices and a Log-Determinant Acyclicity
  Characterization
DAGMA: Learning DAGs via M-matrices and a Log-Determinant Acyclicity Characterization
Kevin Bello
Bryon Aragam
Pradeep Ravikumar
48
78
0
16 Sep 2022
Tutorial on amortized optimization
Tutorial on amortized optimization
Brandon Amos
OffRL
67
42
0
01 Feb 2022
Optimal transport for causal discovery
Optimal transport for causal discovery
Ruibo Tu
Kun Zhang
Hedvig Kjellström
Cheng Zhang
87
19
0
23 Jan 2022
MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms
MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms
Trent Kyono
Yao Zhang
Alexis Bellot
M. Schaar
CML
47
61
0
04 Nov 2021
DAGs with No Fears: A Closer Look at Continuous Optimization for
  Learning Bayesian Networks
DAGs with No Fears: A Closer Look at Continuous Optimization for Learning Bayesian Networks
Dennis L. Wei
Tian Gao
Yue Yu
CML
48
71
0
18 Oct 2020
Masked Gradient-Based Causal Structure Learning
Masked Gradient-Based Causal Structure Learning
Ignavier Ng
Shengyu Zhu
Zhuangyan Fang
Haoyang Li
Zhitang Chen
Jun Wang
CML
75
116
0
18 Oct 2019
Learning Sparse Nonparametric DAGs
Learning Sparse Nonparametric DAGs
Xun Zheng
Chen Dan
Bryon Aragam
Pradeep Ravikumar
Eric P. Xing
CML
101
254
0
29 Sep 2019
Nonparametric sparsity and regularization
Nonparametric sparsity and regularization
Lorenzo Rosasco
S. Villa
S. Mosci
M. Santoro
A. Verri
80
102
0
13 Aug 2012
1