ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.15583
  4. Cited By
Cohere3D: Exploiting Temporal Coherence for Unsupervised Representation
  Learning of Vision-based Autonomous Driving

Cohere3D: Exploiting Temporal Coherence for Unsupervised Representation Learning of Vision-based Autonomous Driving

23 February 2024
Yichen Xie
Hongge Chen
Gregory P. Meyer
Yong Jae Lee
Eric M. Wolff
Masayoshi Tomizuka
Wei Zhan
Yuning Chai
Xin Huang
    3DPC
ArXivPDFHTML

Papers citing "Cohere3D: Exploiting Temporal Coherence for Unsupervised Representation Learning of Vision-based Autonomous Driving"

10 / 10 papers shown
Title
X-Drive: Cross-modality consistent multi-sensor data synthesis for
  driving scenarios
X-Drive: Cross-modality consistent multi-sensor data synthesis for driving scenarios
Yichen Xie
Chenfeng Xu
C-T.John Peng
Shuqi Zhao
Nhat Ho
Alexander T. Pham
Mingyu Ding
M. Tomizuka
W. Zhan
DiffM
31
2
0
02 Nov 2024
Pre-training on Synthetic Driving Data for Trajectory Prediction
Pre-training on Synthetic Driving Data for Trajectory Prediction
Yiheng Li
Seth Z. Zhao
Chenfeng Xu
Chen Tang
Chenran Li
Mingyu Ding
M. Tomizuka
Wei Zhan
27
9
0
18 Sep 2023
SparseFusion: Fusing Multi-Modal Sparse Representations for Multi-Sensor
  3D Object Detection
SparseFusion: Fusing Multi-Modal Sparse Representations for Multi-Sensor 3D Object Detection
Yichen Xie
Chenfeng Xu
Marie-Julie Rakotosaona
Patrick Rim
F. Tombari
Kurt Keutzer
M. Tomizuka
Wei Zhan
3DPC
39
49
0
27 Apr 2023
Time Will Tell: New Outlooks and A Baseline for Temporal Multi-View 3D
  Object Detection
Time Will Tell: New Outlooks and A Baseline for Temporal Multi-View 3D Object Detection
Jinhyung D. Park
Chenfeng Xu
Shijia Yang
Kurt Keutzer
Kris M. Kitani
M. Tomizuka
Wei Zhan
79
153
0
05 Oct 2022
Point-M2AE: Multi-scale Masked Autoencoders for Hierarchical Point Cloud
  Pre-training
Point-M2AE: Multi-scale Masked Autoencoders for Hierarchical Point Cloud Pre-training
Renrui Zhang
Ziyu Guo
Rongyao Fang
Bingyan Zhao
Dong Wang
Yu Qiao
Hongsheng Li
Peng Gao
3DPC
171
241
0
28 May 2022
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
258
7,337
0
11 Nov 2021
Emerging Properties in Self-Supervised Vision Transformers
Emerging Properties in Self-Supervised Vision Transformers
Mathilde Caron
Hugo Touvron
Ishan Misra
Hervé Jégou
Julien Mairal
Piotr Bojanowski
Armand Joulin
283
5,723
0
29 Apr 2021
Auto4D: Learning to Label 4D Objects from Sequential Point Clouds
Auto4D: Learning to Label 4D Objects from Sequential Point Clouds
Binh Yang
Min Bai
Ming Liang
Wenyuan Zeng
R. Urtasun
3DPC
110
48
0
17 Jan 2021
Self-supervised Co-training for Video Representation Learning
Self-supervised Co-training for Video Representation Learning
Tengda Han
Weidi Xie
Andrew Zisserman
SSL
198
304
0
19 Oct 2020
PointContrast: Unsupervised Pre-training for 3D Point Cloud
  Understanding
PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding
Saining Xie
Jiatao Gu
Demi Guo
C. Qi
Leonidas J. Guibas
Or Litany
3DPC
139
618
0
21 Jul 2020
1