ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.16844
  4. Cited By
Think Big, Generate Quick: LLM-to-SLM for Fast Autoregressive Decoding

Think Big, Generate Quick: LLM-to-SLM for Fast Autoregressive Decoding

26 February 2024
Benjamin Bergner
Andrii Skliar
Amelie Royer
Tijmen Blankevoort
Yuki Markus Asano
B. Bejnordi
ArXivPDFHTML

Papers citing "Think Big, Generate Quick: LLM-to-SLM for Fast Autoregressive Decoding"

6 / 6 papers shown
Title
Exploring Gen-AI applications in building research and industry: A review
Exploring Gen-AI applications in building research and industry: A review
Hanlong Wan
Jian Zhang
Yan Chen
Weili Xu
Fan Feng
AI4CE
37
0
0
01 Oct 2024
Distilling Step-by-Step! Outperforming Larger Language Models with Less
  Training Data and Smaller Model Sizes
Distilling Step-by-Step! Outperforming Larger Language Models with Less Training Data and Smaller Model Sizes
Lokesh Nagalapatti
Chun-Liang Li
Chih-Kuan Yeh
Hootan Nakhost
Yasuhisa Fujii
Alexander Ratner
Ranjay Krishna
Chen-Yu Lee
Tomas Pfister
ALM
204
498
0
03 May 2023
The Power of Scale for Parameter-Efficient Prompt Tuning
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
278
3,784
0
18 Apr 2021
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
223
4,424
0
23 Jan 2020
Google's Neural Machine Translation System: Bridging the Gap between
  Human and Machine Translation
Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation
Yonghui Wu
M. Schuster
Z. Chen
Quoc V. Le
Mohammad Norouzi
...
Alex Rudnick
Oriol Vinyals
G. Corrado
Macduff Hughes
J. Dean
AIMat
716
6,724
0
26 Sep 2016
Teaching Machines to Read and Comprehend
Teaching Machines to Read and Comprehend
Karl Moritz Hermann
Tomás Kociský
Edward Grefenstette
L. Espeholt
W. Kay
Mustafa Suleyman
Phil Blunsom
170
3,504
0
10 Jun 2015
1