ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.18752
  4. Cited By
Pre-training Differentially Private Models with Limited Public Data

Pre-training Differentially Private Models with Limited Public Data

28 February 2024
Zhiqi Bu
Xinwei Zhang
Mingyi Hong
Sheng Zha
George Karypis
ArXivPDFHTML

Papers citing "Pre-training Differentially Private Models with Limited Public Data"

10 / 10 papers shown
Title
MAP: Low-compute Model Merging with Amortized Pareto Fronts via Quadratic Approximation
MAP: Low-compute Model Merging with Amortized Pareto Fronts via Quadratic Approximation
Lu Li
T. Zhang
Zhiqi Bu
Suyuchen Wang
Huan He
Jie Fu
Yonghui Wu
Jiang Bian
Yong Chen
Yoshua Bengio
FedML
MoMe
60
3
0
11 Jun 2024
How to DP-fy ML: A Practical Guide to Machine Learning with Differential
  Privacy
How to DP-fy ML: A Practical Guide to Machine Learning with Differential Privacy
Natalia Ponomareva
Hussein Hazimeh
Alexey Kurakin
Zheng Xu
Carson E. Denison
H. B. McMahan
Sergei Vassilvitskii
Steve Chien
Abhradeep Thakurta
67
95
0
01 Mar 2023
Scalable and Efficient Training of Large Convolutional Neural Networks
  with Differential Privacy
Scalable and Efficient Training of Large Convolutional Neural Networks with Differential Privacy
Zhiqi Bu
J. Mao
Shiyun Xu
100
37
0
21 May 2022
Differentially Private Fine-tuning of Language Models
Differentially Private Fine-tuning of Language Models
Da Yu
Saurabh Naik
A. Backurs
Sivakanth Gopi
Huseyin A. Inan
...
Y. Lee
Andre Manoel
Lukas Wutschitz
Sergey Yekhanin
Huishuai Zhang
110
258
0
13 Oct 2021
Opacus: User-Friendly Differential Privacy Library in PyTorch
Opacus: User-Friendly Differential Privacy Library in PyTorch
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
...
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
121
268
0
25 Sep 2021
Emerging Properties in Self-Supervised Vision Transformers
Emerging Properties in Self-Supervised Vision Transformers
Mathilde Caron
Hugo Touvron
Ishan Misra
Hervé Jégou
Julien Mairal
Piotr Bojanowski
Armand Joulin
265
4,299
0
29 Apr 2021
ImageNet-21K Pretraining for the Masses
ImageNet-21K Pretraining for the Masses
T. Ridnik
Emanuel Ben-Baruch
Asaf Noy
Lihi Zelnik-Manor
SSeg
VLM
CLIP
140
542
0
22 Apr 2021
Extracting Training Data from Large Language Models
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
D. Song
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
245
1,386
0
14 Dec 2020
Tempered Sigmoid Activations for Deep Learning with Differential Privacy
Tempered Sigmoid Activations for Deep Learning with Differential Privacy
Nicolas Papernot
Abhradeep Thakurta
Shuang Song
Steve Chien
Ulfar Erlingsson
AAML
110
155
0
28 Jul 2020
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
262
2,696
0
15 Sep 2016
1