ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.02311
  4. Cited By
Bayesian Uncertainty Estimation by Hamiltonian Monte Carlo: Applications
  to Cardiac MRI Segmentation

Bayesian Uncertainty Estimation by Hamiltonian Monte Carlo: Applications to Cardiac MRI Segmentation

4 March 2024
Yidong Zhao
João Tourais
Iain Pierce
Christian Nitsche
T. Treibel
Sebastian Weingartner
Artur M. Schweidtmann
Qian Tao
    BDL
    UQCV
ArXivPDFHTML

Papers citing "Bayesian Uncertainty Estimation by Hamiltonian Monte Carlo: Applications to Cardiac MRI Segmentation"

8 / 8 papers shown
Title
Lost in Tracking: Uncertainty-guided Cardiac Cine MRI Segmentation at
  Right Ventricle Base
Lost in Tracking: Uncertainty-guided Cardiac Cine MRI Segmentation at Right Ventricle Base
Yidong Zhao
Yi Zhang
Orlando Simonetti
Yuchi Han
Qian Tao
22
1
0
04 Oct 2024
BayeSeg: Bayesian Modeling for Medical Image Segmentation with
  Interpretable Generalizability
BayeSeg: Bayesian Modeling for Medical Image Segmentation with Interpretable Generalizability
Shangqi Gao
Hang Zhou
Yibo Gao
Xiahai Zhuang
OOD
35
3
0
03 Mar 2023
Scalable Uncertainty for Computer Vision with Functional Variational
  Inference
Scalable Uncertainty for Computer Vision with Functional Variational Inference
Eduardo D C Carvalho
R. Clark
Andrea Nicastro
Paul H. J. Kelly
BDL
UQCV
71
22
0
06 Mar 2020
Deep learning for cardiac image segmentation: A review
Deep learning for cardiac image segmentation: A review
C. L. P. Chen
C. Qin
Huaqi Qiu
G. Tarroni
Jinming Duan
Wenjia Bai
Daniel Rueckert
SSeg
3DV
53
672
0
09 Nov 2019
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,635
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,109
0
06 Jun 2015
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
232
75,445
0
18 May 2015
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
132
3,263
0
09 Jun 2012
1