ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.03867
  4. Cited By
On the Origins of Linear Representations in Large Language Models

On the Origins of Linear Representations in Large Language Models

6 March 2024
Yibo Jiang
Goutham Rajendran
Pradeep Ravikumar
Bryon Aragam
Victor Veitch
ArXivPDFHTML

Papers citing "On the Origins of Linear Representations in Large Language Models"

9 / 9 papers shown
Title
I Predict Therefore I Am: Is Next Token Prediction Enough to Learn Human-Interpretable Concepts from Data?
I Predict Therefore I Am: Is Next Token Prediction Enough to Learn Human-Interpretable Concepts from Data?
Yuhang Liu
Dong Gong
Erdun Gao
Zhen Zhang
Biwei Huang
Mingming Gong
Anton van den Hengel
Javen Qinfeng Shi
J. Shi
65
0
0
12 Mar 2025
Causality Is Key to Understand and Balance Multiple Goals in Trustworthy ML and Foundation Models
Causality Is Key to Understand and Balance Multiple Goals in Trustworthy ML and Foundation Models
Ruta Binkyte
Ivaxi Sheth
Zhijing Jin
Mohammad Havaei
Bernhard Schölkopf
Mario Fritz
51
0
0
28 Feb 2025
Lines of Thought in Large Language Models
Lines of Thought in Large Language Models
Raphael Sarfati
Toni J. B. Liu
Nicolas Boullé
Christopher Earls
LRM
VLM
LM&Ro
55
1
0
17 Feb 2025
ResiDual Transformer Alignment with Spectral Decomposition
ResiDual Transformer Alignment with Spectral Decomposition
Lorenzo Basile
Valentino Maiorca
Luca Bortolussi
Emanuele Rodolà
Francesco Locatello
43
1
0
31 Oct 2024
All or None: Identifiable Linear Properties of Next-token Predictors in Language Modeling
All or None: Identifiable Linear Properties of Next-token Predictors in Language Modeling
Emanuele Marconato
Sébastien Lachapelle
Sebastian Weichwald
Luigi Gresele
57
3
0
30 Oct 2024
Learning Interpretable Concepts: Unifying Causal Representation Learning
  and Foundation Models
Learning Interpretable Concepts: Unifying Causal Representation Learning and Foundation Models
Goutham Rajendran
Simon Buchholz
Bryon Aragam
Bernhard Schölkopf
Pradeep Ravikumar
AI4CE
83
19
0
14 Feb 2024
Finding Neurons in a Haystack: Case Studies with Sparse Probing
Finding Neurons in a Haystack: Case Studies with Sparse Probing
Wes Gurnee
Neel Nanda
Matthew Pauly
Katherine Harvey
Dmitrii Troitskii
Dimitris Bertsimas
MILM
153
170
0
02 May 2023
Toy Models of Superposition
Toy Models of Superposition
Nelson Elhage
Tristan Hume
Catherine Olsson
Nicholas Schiefer
T. Henighan
...
Sam McCandlish
Jared Kaplan
Dario Amodei
Martin Wattenberg
C. Olah
AAML
MILM
117
314
0
21 Sep 2022
Contrastive Learning Inverts the Data Generating Process
Contrastive Learning Inverts the Data Generating Process
Roland S. Zimmermann
Yash Sharma
Steffen Schneider
Matthias Bethge
Wieland Brendel
SSL
230
206
0
17 Feb 2021
1