ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.05100
  4. Cited By
Exploring the Adversarial Frontier: Quantifying Robustness via
  Adversarial Hypervolume

Exploring the Adversarial Frontier: Quantifying Robustness via Adversarial Hypervolume

IEEE Transactions on Emerging Topics in Computational Intelligence (IEEE TETCI), 2024
8 March 2024
Ping Guo
Cheng Gong
Xi Lin
Zhiyuan Yang
Qingfu Zhang
    AAML
ArXiv (abs)PDFHTML

Papers citing "Exploring the Adversarial Frontier: Quantifying Robustness via Adversarial Hypervolume"

3 / 3 papers shown
Title
Quantifying the Risk of Transferred Black Box Attacks
Quantifying the Risk of Transferred Black Box Attacks
Disesdi Susanna Cox
Niklas Bunzel
AAML
196
0
0
07 Nov 2025
MOS-Attack: A Scalable Multi-objective Adversarial Attack Framework
MOS-Attack: A Scalable Multi-objective Adversarial Attack FrameworkComputer Vision and Pattern Recognition (CVPR), 2025
Ping Guo
Cheng Gong
Xi Lin
Fei Liu
Zhichao Lu
Gang Qu
Zhenkun Wang
AAML
274
0
0
13 Jan 2025
GREAT Score: Global Robustness Evaluation of Adversarial Perturbation
  using Generative Models
GREAT Score: Global Robustness Evaluation of Adversarial Perturbation using Generative ModelsNeural Information Processing Systems (NeurIPS), 2023
Zaitang Li
Pin-Yu Chen
Tsung-Yi Ho
AAMLDiffM
170
6
0
19 Apr 2023
1