ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.06804
  4. Cited By
Shape Non-rigid Kinematics (SNK): A Zero-Shot Method for Non-Rigid Shape
  Matching via Unsupervised Functional Map Regularized Reconstruction

Shape Non-rigid Kinematics (SNK): A Zero-Shot Method for Non-Rigid Shape Matching via Unsupervised Functional Map Regularized Reconstruction

11 March 2024
Souhaib Attaiki
M. Ovsjanikov
    3DPC
ArXivPDFHTML

Papers citing "Shape Non-rigid Kinematics (SNK): A Zero-Shot Method for Non-Rigid Shape Matching via Unsupervised Functional Map Regularized Reconstruction"

4 / 4 papers shown
Title
Unsupervised Learning of Robust Spectral Shape Matching
Unsupervised Learning of Robust Spectral Shape Matching
Dongliang Cao
Paul Roetzer
Florian Bernard
3DPC
21
39
0
27 Apr 2023
3D-CODED : 3D Correspondences by Deep Deformation
3D-CODED : 3D Correspondences by Deep Deformation
Thibault Groueix
Matthew Fisher
Vladimir G. Kim
Bryan C. Russell
Mathieu Aubry
3DPC
3DV
115
325
0
13 Jun 2018
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,801
0
25 Nov 2016
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
231
3,202
0
24 Nov 2016
1