Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2403.09548
Cited By
v1
v2
v3 (latest)
Breast Cancer Classification Using Gradient Boosting Algorithms Focusing on Reducing the False Negative and SHAP for Explainability
14 March 2024
João Manoel Herrera Pinheiro
Marcelo Becker
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Breast Cancer Classification Using Gradient Boosting Algorithms Focusing on Reducing the False Negative and SHAP for Explainability"
8 / 8 papers shown
Title
Machine Learning Approaches to Predict Breast Cancer: Bangladesh Perspective
Taminul Islam
Arindom Kundu
Nazmul Islam Khan
Choyon Chandra Bonik
Flora Akter
Md. Jihadul Islam
37
17
0
30 Jun 2022
Boost then Convolve: Gradient Boosting Meets Graph Neural Networks
Sergei Ivanov
Liudmila Prokhorenkova
AI4CE
100
54
0
21 Jan 2021
Gradient Boosting Neural Networks: GrowNet
Sarkhan Badirli
Xuanqing Liu
Zhengming Xing
Avradeep Bhowmik
Khoa D. Doan
S. Keerthi
FedML
65
87
0
19 Feb 2020
Optuna: A Next-generation Hyperparameter Optimization Framework
Takuya Akiba
Shotaro Sano
Toshihiko Yanase
Takeru Ohta
Masanori Koyama
681
5,985
0
25 Jul 2019
CatBoost: unbiased boosting with categorical features
Anna Veronika Dorogush
Gleb Gusev
A. Vorobev
Nikita Kazeev
Andrey Gulin
88
90
0
28 Jun 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.4K
22,397
0
22 May 2017
XGBoost: A Scalable Tree Boosting System
Tianqi Chen
Carlos Guestrin
856
39,703
0
09 Mar 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.3K
17,241
0
16 Feb 2016
1