Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2403.10250
Cited By
Interpretable Machine Learning for Survival Analysis
15 March 2024
Sophie Hanna Langbein
Mateusz Krzyzinski
Mikolaj Spytek
Hubert Baniecki
P. Biecek
Marvin N. Wright
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Interpretable Machine Learning for Survival Analysis"
6 / 6 papers shown
Title
A Comparative Study of Methods for Estimating Conditional Shapley Values and When to Use Them
Lars Henry Berge Olsen
I. Glad
Martin Jullum
K. Aas
FAtt
35
12
0
16 May 2023
Conditional Feature Importance for Mixed Data
Kristin Blesch
David S. Watson
Marvin N. Wright
35
7
0
06 Oct 2022
SurvTRACE: Transformers for Survival Analysis with Competing Events
Zifeng Wang
Jimeng Sun
33
67
0
02 Oct 2021
SurvNAM: The machine learning survival model explanation
Lev V. Utkin
Egor D. Satyukov
A. Konstantinov
AAML
FAtt
34
28
0
18 Apr 2021
SurvLIME: A method for explaining machine learning survival models
M. Kovalev
Lev V. Utkin
E. Kasimov
98
89
0
18 Mar 2020
DeepSurv: Personalized Treatment Recommender System Using A Cox Proportional Hazards Deep Neural Network
Jared Katzman
Uri Shaham
Jonathan Bates
A. Cloninger
Tingting Jiang
Y. Kluger
BDL
CML
OOD
102
1,229
0
02 Jun 2016
1