Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2403.10642
Cited By
Using Uncertainty Quantification to Characterize and Improve Out-of-Domain Learning for PDEs
15 March 2024
S. C. Mouli
Danielle C. Maddix
S. Alizadeh
Gaurav Gupta
Andrew Stuart
Michael W. Mahoney
Yuyang Wang
UQCV
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Using Uncertainty Quantification to Characterize and Improve Out-of-Domain Learning for PDEs"
6 / 6 papers shown
Title
Active Learning for Neural PDE Solvers
Daniel Musekamp
Marimuthu Kalimuthu
David Holzmüller
Makoto Takamoto
Carlos Fernandez
AI4CE
41
4
0
02 Aug 2024
Fourier Neural Operator with Learned Deformations for PDEs on General Geometries
Zong-Yi Li
Daniel Zhengyu Huang
Burigede Liu
Anima Anandkumar
AI4CE
105
243
0
11 Jul 2022
Multiwavelet-based Operator Learning for Differential Equations
Gaurav Gupta
Xiongye Xiao
P. Bogdan
115
150
0
28 Sep 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
197
2,254
0
18 Oct 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
4,940
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
243
9,042
0
06 Jun 2015
1