ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.12143
  4. Cited By
Graph Neural Networks for Learning Equivariant Representations of Neural
  Networks

Graph Neural Networks for Learning Equivariant Representations of Neural Networks

18 March 2024
Miltiadis Kofinas
Boris Knyazev
Yan Zhang
Yunlu Chen
Gertjan J. Burghouts
E. Gavves
Cees G. M. Snoek
David W. Zhang
ArXivPDFHTML

Papers citing "Graph Neural Networks for Learning Equivariant Representations of Neural Networks"

10 / 10 papers shown
Title
Learning Versatile Optimizers on a Compute Diet
Learning Versatile Optimizers on a Compute Diet
A. Moudgil
Boris Knyazev
Guillaume Lajoie
Eugene Belilovsky
66
0
0
22 Jan 2025
Revisiting Multi-Permutation Equivariance through the Lens of Irreducible Representations
Revisiting Multi-Permutation Equivariance through the Lens of Irreducible Representations
Yonatan Sverdlov
Ido Springer
Nadav Dym
29
2
0
09 Oct 2024
Monomial Matrix Group Equivariant Neural Functional Networks
Monomial Matrix Group Equivariant Neural Functional Networks
Hoang V. Tran
Thieu N. Vo
Tho H. Tran
An T. Nguyen
Tan M. Nguyen
49
5
0
18 Sep 2024
Grounding Continuous Representations in Geometry: Equivariant Neural Fields
Grounding Continuous Representations in Geometry: Equivariant Neural Fields
David R. Wessels
David M. Knigge
Samuele Papa
Riccardo Valperga
Sharvaree P. Vadgama
E. Gavves
Erik J. Bekkers
33
7
0
09 Jun 2024
Model Zoos: A Dataset of Diverse Populations of Neural Network Models
Model Zoos: A Dataset of Diverse Populations of Neural Network Models
Konstantin Schurholt
Diyar Taskiran
Boris Knyazev
Xavier Giró-i-Nieto
Damian Borth
44
29
0
29 Sep 2022
Hyper-Representations as Generative Models: Sampling Unseen Neural
  Network Weights
Hyper-Representations as Generative Models: Sampling Unseen Neural Network Weights
Konstantin Schurholt
Boris Knyazev
Xavier Giró-i-Nieto
Damian Borth
48
38
0
29 Sep 2022
Learning to Learn with Generative Models of Neural Network Checkpoints
Learning to Learn with Generative Models of Neural Network Checkpoints
William S. Peebles
Ilija Radosavovic
Tim Brooks
Alexei A. Efros
Jitendra Malik
UQCV
73
64
0
26 Sep 2022
A Closer Look at Learned Optimization: Stability, Robustness, and
  Inductive Biases
A Closer Look at Learned Optimization: Stability, Robustness, and Inductive Biases
James Harrison
Luke Metz
Jascha Narain Sohl-Dickstein
42
22
0
22 Sep 2022
From data to functa: Your data point is a function and you can treat it
  like one
From data to functa: Your data point is a function and you can treat it like one
Emilien Dupont
Hyunjik Kim
S. M. Ali Eslami
Danilo Jimenez Rezende
Dan Rosenbaum
TDI
3DPC
162
136
0
28 Jan 2022
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
166
1,095
0
27 Apr 2021
1