ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.12730
  4. Cited By
What Does Evaluation of Explainable Artificial Intelligence Actually
  Tell Us? A Case for Compositional and Contextual Validation of XAI Building
  Blocks

What Does Evaluation of Explainable Artificial Intelligence Actually Tell Us? A Case for Compositional and Contextual Validation of XAI Building Blocks

19 March 2024
Kacper Sokol
Julia E. Vogt
ArXivPDFHTML

Papers citing "What Does Evaluation of Explainable Artificial Intelligence Actually Tell Us? A Case for Compositional and Contextual Validation of XAI Building Blocks"

7 / 7 papers shown
Title
Navigating Explanatory Multiverse Through Counterfactual Path Geometry
Navigating Explanatory Multiverse Through Counterfactual Path Geometry
Kacper Sokol
E. Small
Yueqing Xuan
30
5
0
05 Jun 2023
Mind the Gap! Bridging Explainable Artificial Intelligence and Human
  Understanding with Luhmann's Functional Theory of Communication
Mind the Gap! Bridging Explainable Artificial Intelligence and Human Understanding with Luhmann's Functional Theory of Communication
B. Keenan
Kacper Sokol
6
7
0
07 Feb 2023
What and How of Machine Learning Transparency: Building Bespoke
  Explainability Tools with Interoperable Algorithmic Components
What and How of Machine Learning Transparency: Building Bespoke Explainability Tools with Interoperable Algorithmic Components
Kacper Sokol
Alexander Hepburn
Raúl Santos-Rodríguez
Peter A. Flach
23
8
0
08 Sep 2022
Intuitively Assessing ML Model Reliability through Example-Based
  Explanations and Editing Model Inputs
Intuitively Assessing ML Model Reliability through Example-Based Explanations and Editing Model Inputs
Harini Suresh
Kathleen M. Lewis
John Guttag
Arvind Satyanarayan
FAtt
32
25
0
17 Feb 2021
What Do We Want From Explainable Artificial Intelligence (XAI)? -- A
  Stakeholder Perspective on XAI and a Conceptual Model Guiding
  Interdisciplinary XAI Research
What Do We Want From Explainable Artificial Intelligence (XAI)? -- A Stakeholder Perspective on XAI and a Conceptual Model Guiding Interdisciplinary XAI Research
Markus Langer
Daniel Oster
Timo Speith
Holger Hermanns
Lena Kästner
Eva Schmidt
Andreas Sesing
Kevin Baum
XAI
43
415
0
15 Feb 2021
How can I choose an explainer? An Application-grounded Evaluation of
  Post-hoc Explanations
How can I choose an explainer? An Application-grounded Evaluation of Post-hoc Explanations
Sérgio Jesus
Catarina Belém
Vladimir Balayan
João Bento
Pedro Saleiro
P. Bizarro
João Gama
126
119
0
21 Jan 2021
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
225
3,672
0
28 Feb 2017
1