ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.14410
  4. Cited By
GLC++: Source-Free Universal Domain Adaptation through Global-Local
  Clustering and Contrastive Affinity Learning

GLC++: Source-Free Universal Domain Adaptation through Global-Local Clustering and Contrastive Affinity Learning

21 March 2024
Sanqing Qu
Tianpei Zou
Florian Röhrbein
Cewu Lu
Guang Chen
Dacheng Tao
Changjun Jiang
ArXivPDFHTML

Papers citing "GLC++: Source-Free Universal Domain Adaptation through Global-Local Clustering and Contrastive Affinity Learning"

7 / 7 papers shown
Title
Upcycling Models under Domain and Category Shift
Upcycling Models under Domain and Category Shift
Sanqing Qu
Tianpei Zou
Florian Roehrbein
Cewu Lu
Guang-Sheng Chen
Dacheng Tao
Changjun Jiang
25
39
0
13 Mar 2023
Model Adaptation: Historical Contrastive Learning for Unsupervised
  Domain Adaptation without Source Data
Model Adaptation: Historical Contrastive Learning for Unsupervised Domain Adaptation without Source Data
Jiaxing Huang
Dayan Guan
Aoran Xiao
Shijian Lu
126
210
0
07 Oct 2021
Decoupled Adaptation for Cross-Domain Object Detection
Decoupled Adaptation for Cross-Domain Object Detection
Junguang Jiang
Baixu Chen
Jianmin Wang
Mingsheng Long
ObjD
41
42
0
06 Oct 2021
Source Data-absent Unsupervised Domain Adaptation through Hypothesis
  Transfer and Labeling Transfer
Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer
Jian Liang
Dapeng Hu
Yunbo Wang
R. He
Jiashi Feng
128
249
0
14 Dec 2020
On the Effectiveness of Image Rotation for Open Set Domain Adaptation
On the Effectiveness of Image Rotation for Open Set Domain Adaptation
S. Bucci
Mohammad Reza Loghmani
Tatiana Tommasi
23
119
0
24 Jul 2020
A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation
A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation
Jian Liang
Yunbo Wang
Dapeng Hu
R. He
Jiashi Feng
123
104
0
05 Mar 2020
Domain-Adversarial Training of Neural Networks
Domain-Adversarial Training of Neural Networks
Yaroslav Ganin
E. Ustinova
Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
M. Marchand
Victor Lempitsky
GAN
OOD
149
8,353
0
28 May 2015
1