ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.17805
  4. Cited By
Scenario-Based Curriculum Generation for Multi-Agent Autonomous Driving
v1v2 (latest)

Scenario-Based Curriculum Generation for Multi-Agent Autonomous Driving

26 March 2024
Axel Brunnbauer
Luigi Berducci
P. Priller
D. Ničković
Radu Grosu
ArXiv (abs)PDFHTML

Papers citing "Scenario-Based Curriculum Generation for Multi-Agent Autonomous Driving"

19 / 19 papers shown
Title
Stabilizing Unsupervised Environment Design with a Learned Adversary
Stabilizing Unsupervised Environment Design with a Learned Adversary
Ishita Mediratta
Minqi Jiang
Jack Parker-Holder
Michael Dennis
Eugene Vinitsky
Tim Rocktaschel
249
18
0
21 Aug 2023
Evolving Curricula with Regret-Based Environment Design
Evolving Curricula with Regret-Based Environment DesignInternational Conference on Machine Learning (ICML), 2022
Jack Parker-Holder
Minqi Jiang
Michael Dennis
Mikayel Samvelyan
Jakob N. Foerster
Edward Grefenstette
Tim Rocktaschel
345
160
0
02 Mar 2022
A Survey on Safety-Critical Driving Scenario Generation -- A
  Methodological Perspective
A Survey on Safety-Critical Driving Scenario Generation -- A Methodological Perspective
Wenhao Ding
Chejian Xu
Mansur Arief
Hao-ming Lin
Yue Liu
Ding Zhao
479
223
0
04 Feb 2022
Replay-Guided Adversarial Environment Design
Replay-Guided Adversarial Environment Design
Minqi Jiang
Michael Dennis
Jack Parker-Holder
Jakob N. Foerster
Edward Grefenstette
Tim Rocktaschel
422
125
0
06 Oct 2021
MetaDrive: Composing Diverse Driving Scenarios for Generalizable
  Reinforcement Learning
MetaDrive: Composing Diverse Driving Scenarios for Generalizable Reinforcement LearningIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2021
Quanyi Li
Zhenghao Peng
Lan Feng
Qihang Zhang
Zhenghai Xue
Bolei Zhou
352
340
0
26 Sep 2021
The Surprising Effectiveness of PPO in Cooperative, Multi-Agent Games
The Surprising Effectiveness of PPO in Cooperative, Multi-Agent GamesNeural Information Processing Systems (NeurIPS), 2021
Chao Yu
Akash Velu
Eugene Vinitsky
Jiaxuan Gao
Yu Wang
Alexandre M. Bayen
Yi Wu
OffRL
400
1,754
0
02 Mar 2021
Emergent Complexity and Zero-shot Transfer via Unsupervised Environment
  Design
Emergent Complexity and Zero-shot Transfer via Unsupervised Environment DesignNeural Information Processing Systems (NeurIPS), 2020
Michael Dennis
Natasha Jaques
Eugene Vinitsky
Alexandre M. Bayen
Stuart J. Russell
Andrew Critch
Sergey Levine
440
283
0
03 Dec 2020
SMARTS: Scalable Multi-Agent Reinforcement Learning Training School for
  Autonomous Driving
SMARTS: Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving
Ming Zhou
Jun Luo
Julian Villela
Yaodong Yang
David Rusu
...
H. Ammar
Hongbo Zhang
Wulong Liu
Jianye Hao
Jun Wang
343
216
0
19 Oct 2020
Scenic: A Language for Scenario Specification and Data Generation
Scenic: A Language for Scenario Specification and Data Generation
Daniel J. Fremont
Edward J. Kim
T. Dreossi
Shromona Ghosh
Xiangyu Yue
Alberto L. Sangiovanni-Vincentelli
Sanjit A. Seshia
228
122
0
13 Oct 2020
Prioritized Level Replay
Prioritized Level Replay
Minqi Jiang
Edward Grefenstette
Tim Rocktaschel
OffRL
362
188
0
08 Oct 2020
PettingZoo: Gym for Multi-Agent Reinforcement Learning
PettingZoo: Gym for Multi-Agent Reinforcement Learning
J. K. Terry
Benjamin Black
Nathaniel Grammel
Mario Jayakumar
Ananth Hari
...
Caroline Horsch
Clemens Dieffendahl
Niall L. Williams
Yashas Lokesh
Praveen Ravi
OffRL
493
354
0
30 Sep 2020
Automatic Curriculum Learning For Deep RL: A Short Survey
Automatic Curriculum Learning For Deep RL: A Short SurveyInternational Joint Conference on Artificial Intelligence (IJCAI), 2020
Rémy Portelas
Cédric Colas
Lilian Weng
Katja Hofmann
Pierre-Yves Oudeyer
ODL
280
198
0
10 Mar 2020
BARK: Open Behavior Benchmarking in Multi-Agent Environments
BARK: Open Behavior Benchmarking in Multi-Agent EnvironmentsIEEE/RJS International Conference on Intelligent RObots and Systems (IROS), 2020
Julian Bernhard
Klemens Esterle
Patrick Hart
Tobias Kessler
286
44
0
05 Mar 2020
Multi-Agent Connected Autonomous Driving using Deep Reinforcement
  Learning
Multi-Agent Connected Autonomous Driving using Deep Reinforcement LearningIEEE International Joint Conference on Neural Network (IJCNN), 2019
Praveen Palanisamy
182
162
0
11 Nov 2019
Optuna: A Next-generation Hyperparameter Optimization Framework
Optuna: A Next-generation Hyperparameter Optimization FrameworkKnowledge Discovery and Data Mining (KDD), 2019
Takuya Akiba
Shotaro Sano
Toshihiko Yanase
Takeru Ohta
Masanori Koyama
813
7,786
0
25 Jul 2019
Scenic: A Language for Scenario Specification and Scene Generation
Scenic: A Language for Scenario Specification and Scene GenerationACM-SIGPLAN Symposium on Programming Language Design and Implementation (PLDI), 2018
Daniel J. Fremont
T. Dreossi
Shromona Ghosh
Xiangyu Yue
Alberto L. Sangiovanni-Vincentelli
Sanjit A. Seshia
226
289
0
25 Sep 2018
CARLA: An Open Urban Driving Simulator
CARLA: An Open Urban Driving Simulator
Alexey Dosovitskiy
G. Ros
Felipe Codevilla
Antonio M. López
V. Koltun
VLM
467
6,039
0
10 Nov 2017
Proximal Policy Optimization Algorithms
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
1.1K
23,585
0
20 Jul 2017
OpenAI Gym
OpenAI Gym
Greg Brockman
Vicki Cheung
Ludwig Pettersson
Jonas Schneider
John Schulman
Jie Tang
Wojciech Zaremba
OffRLODL
505
5,359
0
05 Jun 2016
1