ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.01041
  4. Cited By
Can LLMs get help from other LLMs without revealing private information?
v1v2 (latest)

Can LLMs get help from other LLMs without revealing private information?

1 April 2024
Florian Hartmann
D. Tran
Peter Kairouz
Victor Carbune
Blaise Agüera y Arcas
ArXiv (abs)PDFHTML

Papers citing "Can LLMs get help from other LLMs without revealing private information?"

5 / 5 papers shown
Title
A Survey on Collaborating Small and Large Language Models for Performance, Cost-effectiveness, Cloud-edge Privacy, and Trustworthiness
A Survey on Collaborating Small and Large Language Models for Performance, Cost-effectiveness, Cloud-edge Privacy, and Trustworthiness
Fali Wang
Jihai Chen
Shuhua Yang
Ali Al-Lawati
Linli Tang
Hui Liu
Suhang Wang
155
2
0
14 Oct 2025
1-2-3 Check: Enhancing Contextual Privacy in LLM via Multi-Agent Reasoning
1-2-3 Check: Enhancing Contextual Privacy in LLM via Multi-Agent Reasoning
Wenkai Li
Liwen Sun
Zhenxiang Guan
Xuhui Zhou
Maarten Sap
LLMAG
104
3
0
11 Aug 2025
SoK: The Privacy Paradox of Large Language Models: Advancements, Privacy Risks, and Mitigation
SoK: The Privacy Paradox of Large Language Models: Advancements, Privacy Risks, and MitigationACM Asia Conference on Computer and Communications Security (AsiaCCS), 2025
Yashothara Shanmugarasa
Ming Ding
M. Chamikara
Thierry Rakotoarivelo
PILMAILaw
366
7
0
15 Jun 2025
Collaborative LLM Numerical Reasoning with Local Data Protection
Collaborative LLM Numerical Reasoning with Local Data Protection
Min Zhang
Yuzhe Lu
Yun Zhou
Panpan Xu
Lin Lee Cheong
Chang-Tien Lu
Haozhu Wang
319
0
0
01 Apr 2025
Protecting Users From Themselves: Safeguarding Contextual Privacy in Interactions with Conversational Agents
Protecting Users From Themselves: Safeguarding Contextual Privacy in Interactions with Conversational AgentsAnnual Meeting of the Association for Computational Linguistics (ACL), 2025
Ivoline Ngong
Swanand Kadhe
Hao Wang
K. Murugesan
Justin D. Weisz
Amit Dhurandhar
Karthikeyan N. Ramamurthy
235
12
0
22 Feb 2025
1