Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2404.11273
Cited By
Training Transformer Models by Wavelet Losses Improves Quantitative and Visual Performance in Single Image Super-Resolution
17 April 2024
Cansu Korkmaz
A. Murat Tekalp
ViT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Training Transformer Models by Wavelet Losses Improves Quantitative and Visual Performance in Single Image Super-Resolution"
6 / 6 papers shown
Title
NTIRE 2025 Challenge on Image Super-Resolution (
×
\times
×
4): Methods and Results
Zheng Chen
Kai Liu
Jue Gong
J. Wang
Lei Sun
...
Prashant Patil
Santosh Kumar Vipparthi
Subrahmanyam Murala
Bilel Benjdira
Anas M. Ali
SupR
50
0
0
20 Apr 2025
The Tenth NTIRE 2025 Image Denoising Challenge Report
Lei-huan Sun
Hang Guo
Bin Ren
Luc Van Gool
Radu Timofte
...
Kun Li
Shengeng Tang
Y. Zhang
Weirun Zhou
Haoxuan Lu
3DGS
41
7
0
16 Apr 2025
AdaptSR: Low-Rank Adaptation for Efficient and Scalable Real-World Super-Resolution
Cansu Korkmaz
Nancy Mehta
Radu Timofte
62
0
0
10 Mar 2025
NTIRE 2024 Challenge on Image Super-Resolution (
×
\times
×
4): Methods and Results
Zheng Chen
Zongwei Wu
Eduard Zamfir
Kai Zhang
Yulun Zhang
...
Yan Luo
Yanyan Wei
Asif Hussain Khan
C. Micheloni
N. Martinel
SupR
28
32
0
15 Apr 2024
PASTA: Towards Flexible and Efficient HDR Imaging Via Progressively Aggregated Spatio-Temporal Alignment
Xiaoning Liu
Ao Li
Zongwei Wu
Yapeng Du
Le Zhang
Yulun Zhang
Radu Timofte
Ce Zhu
23
2
0
15 Mar 2024
Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions
Wenhai Wang
Enze Xie
Xiang Li
Deng-Ping Fan
Kaitao Song
Ding Liang
Tong Lu
Ping Luo
Ling Shao
ViT
263
3,538
0
24 Feb 2021
1