ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.11599
  4. Cited By
Variational Bayesian Last Layers

Variational Bayesian Last Layers

17 April 2024
James Harrison
John Willes
Jasper Snoek
    BDL
    UQCV
ArXivPDFHTML

Papers citing "Variational Bayesian Last Layers"

8 / 8 papers shown
Title
Lightning UQ Box: A Comprehensive Framework for Uncertainty
  Quantification in Deep Learning
Lightning UQ Box: A Comprehensive Framework for Uncertainty Quantification in Deep Learning
Nils Lehmann
Jakob Gawlikowski
Adam J. Stewart
Vytautas Jancauskas
Stefan Depeweg
Eric T. Nalisnick
N. Gottschling
35
0
0
04 Oct 2024
Scalable Bayesian Learning with posteriors
Scalable Bayesian Learning with posteriors
Samuel Duffield
Kaelan Donatella
Johnathan Chiu
Phoebe Klett
Daniel Simpson
BDL
UQCV
41
1
0
31 May 2024
Improved off-policy training of diffusion samplers
Improved off-policy training of diffusion samplers
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Yoshua Bengio
Nikolay Malkin
OffRL
59
16
0
07 Feb 2024
Uncertainty Quantification and Propagation in Surrogate-based Bayesian Inference
Uncertainty Quantification and Propagation in Surrogate-based Bayesian Inference
Philipp Reiser
Javier Enrique Aguilar
A. Guthke
Paul-Christian Burkner
31
0
0
08 Dec 2023
Improved uncertainty quantification for neural networks with Bayesian
  last layer
Improved uncertainty quantification for neural networks with Bayesian last layer
F. Fiedler
S. Lucia
UQCV
BDL
35
12
0
21 Feb 2023
Correlated Input-Dependent Label Noise in Large-Scale Image
  Classification
Correlated Input-Dependent Label Noise in Large-Scale Image Classification
Mark Collier
Basil Mustafa
Efi Kokiopoulou
Rodolphe Jenatton
Jesse Berent
NoLa
167
53
0
19 May 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,635
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,042
0
06 Jun 2015
1