ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.12788
  4. Cited By
REXEL: An End-to-end Model for Document-Level Relation Extraction and
  Entity Linking

REXEL: An End-to-end Model for Document-Level Relation Extraction and Entity Linking

19 April 2024
N. Bouziani
Shubhi Tyagi
Joseph Fisher
Jens Lehmann
Andrea Pierleoni
    SyDa
ArXivPDFHTML

Papers citing "REXEL: An End-to-end Model for Document-Level Relation Extraction and Entity Linking"

4 / 4 papers shown
Title
ReFinED: An Efficient Zero-shot-capable Approach to End-to-End Entity
  Linking
ReFinED: An Efficient Zero-shot-capable Approach to End-to-End Entity Linking
Tom Ayoola
Shubhi Tyagi
Joseph Fisher
Christos Christodoulopoulos
Andrea Pierleoni
37
83
0
08 Jul 2022
Revisiting DocRED -- Addressing the False Negative Problem in Relation
  Extraction
Revisiting DocRED -- Addressing the False Negative Problem in Relation Extraction
Qingyu Tan
Lu Xu
Lidong Bing
Hwee Tou Ng
Sharifah Mahani Aljunied
38
64
0
25 May 2022
Separating Retention from Extraction in the Evaluation of End-to-end
  Relation Extraction
Separating Retention from Extraction in the Evaluation of End-to-end Relation Extraction
Bruno Taillé
Vincent Guigue
Geoffrey Scoutheeten
Patrick Gallinari
55
5
0
24 Sep 2021
DeepType: Multilingual Entity Linking by Neural Type System Evolution
DeepType: Multilingual Entity Linking by Neural Type System Evolution
Jonathan Raiman
O. Raiman
BDL
HAI
112
183
0
03 Feb 2018
1