ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.16534
  4. Cited By
SIDEs: Separating Idealization from Deceptive Explanations in xAI

SIDEs: Separating Idealization from Deceptive Explanations in xAI

25 April 2024
Emily Sullivan
ArXivPDFHTML

Papers citing "SIDEs: Separating Idealization from Deceptive Explanations in xAI"

6 / 6 papers shown
Title
Improvement-Focused Causal Recourse (ICR)
Improvement-Focused Causal Recourse (ICR)
Gunnar Konig
Timo Freiesleben
Moritz Grosse-Wentrup
CML
26
15
0
27 Oct 2022
The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective
The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective
Satyapriya Krishna
Tessa Han
Alex Gu
Steven Wu
S. Jabbari
Himabindu Lakkaraju
172
185
0
03 Feb 2022
Reasons, Values, Stakeholders: A Philosophical Framework for Explainable
  Artificial Intelligence
Reasons, Values, Stakeholders: A Philosophical Framework for Explainable Artificial Intelligence
Atoosa Kasirzadeh
27
24
0
01 Mar 2021
What Do We Want From Explainable Artificial Intelligence (XAI)? -- A
  Stakeholder Perspective on XAI and a Conceptual Model Guiding
  Interdisciplinary XAI Research
What Do We Want From Explainable Artificial Intelligence (XAI)? -- A Stakeholder Perspective on XAI and a Conceptual Model Guiding Interdisciplinary XAI Research
Markus Langer
Daniel Oster
Timo Speith
Holger Hermanns
Lena Kästner
Eva Schmidt
Andreas Sesing
Kevin Baum
XAI
51
415
0
15 Feb 2021
Formalizing Trust in Artificial Intelligence: Prerequisites, Causes and
  Goals of Human Trust in AI
Formalizing Trust in Artificial Intelligence: Prerequisites, Causes and Goals of Human Trust in AI
Alon Jacovi
Ana Marasović
Tim Miller
Yoav Goldberg
246
425
0
15 Oct 2020
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
227
3,681
0
28 Feb 2017
1