ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.01462
  4. Cited By
Uncertainty for Active Learning on Graphs

Uncertainty for Active Learning on Graphs

2 May 2024
Dominik Fuchsgruber
Tom Wollschlager
Bertrand Charpentier
Antonio Oroz
Stephan Günnemann
ArXivPDFHTML

Papers citing "Uncertainty for Active Learning on Graphs"

10 / 10 papers shown
Title
Shapley-Guided Utility Learning for Effective Graph Inference Data Valuation
Shapley-Guided Utility Learning for Effective Graph Inference Data Valuation
Hongliang Chi
Qiong Wu
Zhengyi Zhou
Yao Ma
TDI
AAML
68
0
0
23 Mar 2025
Efficient Data Selection for Training Genomic Perturbation Models
Efficient Data Selection for Training Genomic Perturbation Models
G. Panagopoulos
J. Lutzeyer
Sofiane Ennadir
Michalis Vazirgiannis
Jun Pang
66
0
0
18 Mar 2025
Joint Out-of-Distribution Filtering and Data Discovery Active Learning
Sebastian Schmidt
Leonard Schenk
Leo Schwinn
Stephan Günnemann
63
1
0
04 Mar 2025
Federated Learning with Sample-level Client Drift Mitigation
Federated Learning with Sample-level Client Drift Mitigation
Haoran Xu
Jiaze Li
Wanyi Wu
Hao Ren
FedML
36
0
0
20 Jan 2025
Trajectory Improvement and Reward Learning from Comparative Language
  Feedback
Trajectory Improvement and Reward Learning from Comparative Language Feedback
Zhaojing Yang
Miru Jun
J. Tien
Stuart J. Russell
Anca Dragan
Erdem Bıyık
29
5
0
08 Oct 2024
DELTA: Dual Consistency Delving with Topological Uncertainty for Active
  Graph Domain Adaptation
DELTA: Dual Consistency Delving with Topological Uncertainty for Active Graph Domain Adaptation
Pengyun Wang
Yadi Cao
Chris Russell
Siyu Heng
Junyu Luo
Yanxin Shen
Xiao Luo
38
1
0
13 Sep 2024
Active Learning for Graph Neural Networks via Node Feature Propagation
Active Learning for Graph Neural Networks via Node Feature Propagation
Yuexin Wu
Yichong Xu
Aarti Singh
Yiming Yang
A. Dubrawski
GNN
AI4CE
46
63
0
16 Oct 2019
Contextual Stochastic Block Models
Contextual Stochastic Block Models
Y. Deshpande
Andrea Montanari
Elchanan Mossel
S. Sen
98
151
0
23 Jul 2018
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,635
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,042
0
06 Jun 2015
1