ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.01524
  4. Cited By
A separability-based approach to quantifying generalization: which layer
  is best?

A separability-based approach to quantifying generalization: which layer is best?

2 May 2024
Luciano Dyballa
Evan Gerritz
Steven W. Zucker
    OOD
ArXivPDFHTML

Papers citing "A separability-based approach to quantifying generalization: which layer is best?"

8 / 8 papers shown
Title
Intermediate Layer Classifiers for OOD generalization
Intermediate Layer Classifiers for OOD generalization
Arnas Uselis
Seong Joon Oh
OOD
40
0
0
07 Apr 2025
Spectral regularization for adversarially-robust representation learning
Spectral regularization for adversarially-robust representation learning
Sheng Yang
Jacob A. Zavatone-Veth
C. Pehlevan
AAML
OOD
33
0
0
27 May 2024
Large Language Models are Zero-Shot Reasoners
Large Language Models are Zero-Shot Reasoners
Takeshi Kojima
S. Gu
Machel Reid
Yutaka Matsuo
Yusuke Iwasawa
ReLM
LRM
291
4,048
0
24 May 2022
Generalized Out-of-Distribution Detection: A Survey
Generalized Out-of-Distribution Detection: A Survey
Jingkang Yang
Kaiyang Zhou
Yixuan Li
Ziwei Liu
171
870
0
21 Oct 2021
Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction
  without Convolutions
Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions
Wenhai Wang
Enze Xie
Xiang Li
Deng-Ping Fan
Kaitao Song
Ding Liang
Tong Lu
Ping Luo
Ling Shao
ViT
263
3,538
0
24 Feb 2021
Iterative label cleaning for transductive and semi-supervised few-shot
  learning
Iterative label cleaning for transductive and semi-supervised few-shot learning
Michalis Lazarou
Tania Stathaki
Yannis Avrithis
33
60
0
14 Dec 2020
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
273
2,878
0
15 Sep 2016
Learning Deep Representations of Fine-grained Visual Descriptions
Learning Deep Representations of Fine-grained Visual Descriptions
Scott E. Reed
Zeynep Akata
Bernt Schiele
Honglak Lee
OCL
VLM
160
841
0
17 May 2016
1