ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.06574
  4. Cited By
Deep video representation learning: a survey

Deep video representation learning: a survey

10 May 2024
Elham Ravanbakhsh
Yongqing Liang
J. Ramanujam
Xin Li
ArXivPDFHTML

Papers citing "Deep video representation learning: a survey"

8 / 8 papers shown
Title
CrossCLR: Cross-modal Contrastive Learning For Multi-modal Video
  Representations
CrossCLR: Cross-modal Contrastive Learning For Multi-modal Video Representations
Mohammadreza Zolfaghari
Yi Zhu
Peter V. Gehler
Thomas Brox
108
122
0
30 Sep 2021
Is Space-Time Attention All You Need for Video Understanding?
Is Space-Time Attention All You Need for Video Understanding?
Gedas Bertasius
Heng Wang
Lorenzo Torresani
ViT
272
1,939
0
09 Feb 2021
Video Transformer Network
Video Transformer Network
Daniel Neimark
Omri Bar
Maya Zohar
Dotan Asselmann
ViT
188
375
0
01 Feb 2021
Feedback Graph Convolutional Network for Skeleton-based Action
  Recognition
Feedback Graph Convolutional Network for Skeleton-based Action Recognition
Hao-Yu Yang
D. Yan
Ling Zhang
Dong Li
Yunda Sun
Shaodi You
Stephen J. Maybank
28
91
0
17 Mar 2020
Learning Fast and Robust Target Models for Video Object Segmentation
Learning Fast and Robust Target Models for Video Object Segmentation
Andreas Robinson
Felix Järemo Lawin
Martin Danelljan
F. Khan
M. Felsberg
VOS
41
137
0
27 Feb 2020
Grouped Spatial-Temporal Aggregation for Efficient Action Recognition
Grouped Spatial-Temporal Aggregation for Efficient Action Recognition
Chenxu Luo
Alan Yuille
102
149
0
28 Sep 2019
ECO: Efficient Convolutional Network for Online Video Understanding
ECO: Efficient Convolutional Network for Online Video Understanding
Mohammadreza Zolfaghari
Kamaljeet Singh
Thomas Brox
111
495
0
24 Apr 2018
Scene Flow to Action Map: A New Representation for RGB-D based Action
  Recognition with Convolutional Neural Networks
Scene Flow to Action Map: A New Representation for RGB-D based Action Recognition with Convolutional Neural Networks
Pichao Wang
W. Li
Zhimin Gao
Yuyao Zhang
Chang-Fu Tang
P. Ogunbona
3DPC
159
131
0
28 Feb 2017
1