Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2405.08672
Cited By
EndoDAC: Efficient Adapting Foundation Model for Self-Supervised Depth Estimation from Any Endoscopic Camera
14 May 2024
Beilei Cui
Mobarakol Islam
Long Bai
An-Chi Wang
Hongliang Ren
MedIm
Re-assign community
ArXiv
PDF
HTML
Papers citing
"EndoDAC: Efficient Adapting Foundation Model for Self-Supervised Depth Estimation from Any Endoscopic Camera"
7 / 7 papers shown
Title
Endo-FASt3r: Endoscopic Foundation model Adaptation for Structure from motion
Mona Sheikh Zeinoddin
Mobarakol Islam
Zafer Tandogdu
Greg Shaw
Mathew J. Clarkson
E. Mazomenos
Danail Stoyanov
61
0
0
10 Mar 2025
NFL-BA: Improving Endoscopic SLAM with Near-Field Light Bundle Adjustment
Andrea Dunn Beltran
Daniel Rho
Marc Niethammer
Roni Sengupta
Roni Sengupta
86
2
0
17 Dec 2024
Advancing Depth Anything Model for Unsupervised Monocular Depth Estimation in Endoscopy
Bojian Li
Bo Liu
Jinghua Yue
F. Zhou
Fugen Zhou
MedIm
MDE
42
2
0
12 Sep 2024
EndoOmni: Zero-Shot Cross-Dataset Depth Estimation in Endoscopy by Robust Self-Learning from Noisy Labels
Qingyao Tian
Zhen Chen
Huai Liao
Xinyan Huang
Lujie Li
Sebastien Ourselin
Hongbin Liu
53
1
0
09 Sep 2024
Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data
Lihe Yang
Bingyi Kang
Zilong Huang
Xiaogang Xu
Jiashi Feng
Hengshuang Zhao
VLM
139
681
0
19 Jan 2024
SAM Meets Robotic Surgery: An Empirical Study in Robustness Perspective
An-Chi Wang
Mobarakol Islam
Mengya Xu
Yang Zhang
Hongliang Ren
AAML
VLM
74
36
0
28 Apr 2023
Customized Segment Anything Model for Medical Image Segmentation
Kaiwen Zhang
Dong Liu
MedIm
VLM
95
276
0
26 Apr 2023
1