ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.08971
  4. Cited By
Computation-Aware Kalman Filtering and Smoothing

Computation-Aware Kalman Filtering and Smoothing

International Conference on Artificial Intelligence and Statistics (AISTATS), 2024
13 March 2025
Marvin Pfortner
Jonathan Wenger
Jon Cockayne
Philipp Hennig
ArXiv (abs)PDFHTML

Papers citing "Computation-Aware Kalman Filtering and Smoothing"

22 / 22 papers shown
Title
Bayesian Natural Gradient Fine-Tuning of CLIP Models via Kalman Filtering
Bayesian Natural Gradient Fine-Tuning of CLIP Models via Kalman Filtering
Hossein Abdi
Mingfei Sun
Wei Pan
VLM
205
0
0
03 Nov 2025
Scalable Gaussian Processes with Latent Kronecker Structure
Scalable Gaussian Processes with Latent Kronecker Structure
Jihao Andreas Lin
Sebastian Ament
Maximilian Balandat
David Eriksson
José Miguel Hernández-Lobato
E. Bakshy
155
3
0
07 Jun 2025
Randomised Postiterations for Calibrated BayesCG
Randomised Postiterations for Calibrated BayesCG
Niall Vyas
Disha Hegde
Jon Cockayne
299
0
0
05 Apr 2025
Learning to Solve Related Linear Systems
Learning to Solve Related Linear Systems
Disha Hegde
Jon Cockayne
240
0
0
21 Mar 2025
Online Conformal Probabilistic Numerics via Adaptive Edge-Cloud Offloading
Online Conformal Probabilistic Numerics via Adaptive Edge-Cloud Offloading
Qiushuo Hou
Sangwoo Park
Matteo Zecchin
Yunlong Cai
G. Yu
Osvaldo Simeone
622
0
0
18 Mar 2025
Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference
Computation-Aware Gaussian Processes: Model Selection And Linear-Time InferenceNeural Information Processing Systems (NeurIPS), 2024
Jonathan Wenger
Kaiwen Wu
Philipp Hennig
Jacob R. Gardner
Geoff Pleiss
John P. Cunningham
312
9
0
01 Nov 2024
Calibrated Computation-Aware Gaussian Processes
Calibrated Computation-Aware Gaussian ProcessesInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2024
Disha Hegde
Mohamed Adil
Jon Cockayne
212
5
0
11 Oct 2024
The Rank-Reduced Kalman Filter: Approximate Dynamical-Low-Rank Filtering
  In High Dimensions
The Rank-Reduced Kalman Filter: Approximate Dynamical-Low-Rank Filtering In High DimensionsNeural Information Processing Systems (NeurIPS), 2023
Jonathan Schmidt
Philipp Hennig
Jorg Nick
Filip Tronarp
261
14
0
13 Jun 2023
Posterior and Computational Uncertainty in Gaussian Processes
Posterior and Computational Uncertainty in Gaussian ProcessesNeural Information Processing Systems (NeurIPS), 2022
Jonathan Wenger
Geoff Pleiss
Marvin Pfortner
Philipp Hennig
John P. Cunningham
501
21
0
30 May 2022
Spatio-Temporal Variational Gaussian Processes
Spatio-Temporal Variational Gaussian ProcessesNeural Information Processing Systems (NeurIPS), 2021
Oliver Hamelijnck
William J. Wilkinson
Niki A. Loppi
Arno Solin
Theodoros Damoulas
AI4TS
179
47
0
02 Nov 2021
Probabilistic Linear Solvers for Machine Learning
Probabilistic Linear Solvers for Machine LearningNeural Information Processing Systems (NeurIPS), 2020
Jonathan Wenger
Philipp Hennig
207
18
0
19 Oct 2020
Fast Matrix Square Roots with Applications to Gaussian Processes and
  Bayesian Optimization
Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization
Geoff Pleiss
M. Jankowiak
David Eriksson
Anil Damle
Jacob R. Gardner
211
45
0
19 Jun 2020
Efficiently Sampling Functions from Gaussian Process Posteriors
Efficiently Sampling Functions from Gaussian Process PosteriorsInternational Conference on Machine Learning (ICML), 2020
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
306
177
0
21 Feb 2020
Temporal Parallelization of Bayesian Smoothers
Temporal Parallelization of Bayesian SmoothersIEEE Transactions on Automatic Control (IEEE TAC), 2019
Simo Särkkä
Á. F. García-Fernández
304
48
0
30 May 2019
Learning Latent Dynamics for Planning from Pixels
Learning Latent Dynamics for Planning from Pixels
Danijar Hafner
Timothy Lillicrap
Ian S. Fischer
Ruben Villegas
David R Ha
Honglak Lee
James Davidson
BDL
635
1,631
0
12 Nov 2018
Gaussian Processes and Kernel Methods: A Review on Connections and
  Equivalences
Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences
Motonobu Kanagawa
Philipp Hennig
Dino Sejdinovic
Bharath K. Sriperumbudur
GPBDL
248
382
0
06 Jul 2018
Efficient Spatio-Temporal Gaussian Regression via Kalman Filtering
Efficient Spatio-Temporal Gaussian Regression via Kalman Filtering
M. Todescato
Andrea Carron
R. Carli
G. Pillonetto
Luca Schenato
144
29
0
03 May 2017
Bayesian Probabilistic Numerical Methods
Bayesian Probabilistic Numerical MethodsSIAM Review (SIAM Rev.), 2017
Jon Cockayne
Chris J. Oates
T. Sullivan
Mark Girolami
283
173
0
13 Feb 2017
On dimension reduction in Gaussian filters
On dimension reduction in Gaussian filters
A. Solonen
Tiangang Cui
J. Hakkarainen
Youssef Marzouk
126
24
0
26 Aug 2015
Probabilistic Numerics and Uncertainty in Computations
Probabilistic Numerics and Uncertainty in ComputationsProceedings of the Royal Society A (Proc. R. Soc. A), 2015
Philipp Hennig
Michael A. Osborne
Mark Girolami
187
319
0
03 Jun 2015
Probabilistic Interpretation of Linear Solvers
Probabilistic Interpretation of Linear SolversSIAM Journal on Optimization (SIAM J. Optim.), 2014
Philipp Hennig
187
109
0
10 Feb 2014
Infinite-dimensional Bayesian filtering for detection of quasi-periodic
  phenomena in spatio-temporal data
Infinite-dimensional Bayesian filtering for detection of quasi-periodic phenomena in spatio-temporal data
Arno Solin
Simo Särkkä
167
24
0
11 Mar 2013
1