Papers
Communities
Organizations
Events
Blog
Pricing
Feedback
Contact Sales
Search
Open menu
Home
Papers
All Papers
Title
Home
Papers
2405.08971
Cited By
Computation-Aware Kalman Filtering and Smoothing
13 March 2025
Marvin Pfortner
Jonathan Wenger
Jon Cockayne
Philipp Hennig
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Computation-Aware Kalman Filtering and Smoothing"
21 / 21 papers shown
Title
Scalable Gaussian Processes with Latent Kronecker Structure
Jihao Andreas Lin
Sebastian Ament
Maximilian Balandat
David Eriksson
José Miguel Hernández-Lobato
E. Bakshy
43
3
0
07 Jun 2025
Randomised Postiterations for Calibrated BayesCG
Niall Vyas
Disha Hegde
Jon Cockayne
124
0
0
05 Apr 2025
Learning to Solve Related Linear Systems
Disha Hegde
Jon Cockayne
132
0
0
21 Mar 2025
Online Conformal Probabilistic Numerics via Adaptive Edge-Cloud Offloading
Qiushuo Hou
Sangwoo Park
Matteo Zecchin
Yunlong Cai
G. Yu
Osvaldo Simeone
354
0
0
18 Mar 2025
Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference
Jonathan Wenger
Kaiwen Wu
Philipp Hennig
Jacob R. Gardner
Geoff Pleiss
John P. Cunningham
140
7
0
01 Nov 2024
Calibrated Computation-Aware Gaussian Processes
Disha Hegde
Mohamed Adil
Jon Cockayne
120
5
0
11 Oct 2024
The Rank-Reduced Kalman Filter: Approximate Dynamical-Low-Rank Filtering In High Dimensions
Jonathan Schmidt
Philipp Hennig
Jorg Nick
Filip Tronarp
125
11
0
13 Jun 2023
Posterior and Computational Uncertainty in Gaussian Processes
Jonathan Wenger
Geoff Pleiss
Marvin Pfortner
Philipp Hennig
John P. Cunningham
222
20
0
30 May 2022
Spatio-Temporal Variational Gaussian Processes
Oliver Hamelijnck
William J. Wilkinson
Niki A. Loppi
Arno Solin
Theodoros Damoulas
AI4TS
106
38
0
02 Nov 2021
Probabilistic Linear Solvers for Machine Learning
Jonathan Wenger
Philipp Hennig
124
17
0
19 Oct 2020
Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization
Geoff Pleiss
M. Jankowiak
David Eriksson
Anil Damle
Jacob R. Gardner
103
45
0
19 Jun 2020
Efficiently Sampling Functions from Gaussian Process Posteriors
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
150
168
0
21 Feb 2020
Temporal Parallelization of Bayesian Smoothers
Simo Särkkä
Á. F. García-Fernández
236
41
0
30 May 2019
Learning Latent Dynamics for Planning from Pixels
Danijar Hafner
Timothy Lillicrap
Ian S. Fischer
Ruben Villegas
David R Ha
Honglak Lee
James Davidson
BDL
312
1,498
0
12 Nov 2018
Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences
Motonobu Kanagawa
Philipp Hennig
Dino Sejdinovic
Bharath K. Sriperumbudur
GP
BDL
188
353
0
06 Jul 2018
Efficient Spatio-Temporal Gaussian Regression via Kalman Filtering
M. Todescato
Andrea Carron
R. Carli
G. Pillonetto
Luca Schenato
76
27
0
03 May 2017
Bayesian Probabilistic Numerical Methods
Jon Cockayne
Chris J. Oates
T. Sullivan
Mark Girolami
163
168
0
13 Feb 2017
On dimension reduction in Gaussian filters
A. Solonen
Tiangang Cui
J. Hakkarainen
Youssef Marzouk
74
22
0
26 Aug 2015
Probabilistic Numerics and Uncertainty in Computations
Philipp Hennig
Michael A. Osborne
Mark Girolami
123
310
0
03 Jun 2015
Probabilistic Interpretation of Linear Solvers
Philipp Hennig
110
107
0
10 Feb 2014
Infinite-dimensional Bayesian filtering for detection of quasi-periodic phenomena in spatio-temporal data
Arno Solin
Simo Särkkä
119
24
0
11 Mar 2013
1