ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.11618
  4. Cited By
Transcriptomics-guided Slide Representation Learning in Computational
  Pathology

Transcriptomics-guided Slide Representation Learning in Computational Pathology

19 May 2024
Guillaume Jaume
Lukas Oldenburg
Anurag J. Vaidya
Richard J. Chen
Drew F. K. Williamson
Thomas Peeters
Andrew H. Song
Faisal Mahmood
ArXivPDFHTML

Papers citing "Transcriptomics-guided Slide Representation Learning in Computational Pathology"

22 / 22 papers shown
Title
Teaching pathology foundation models to accurately predict gene expression with parameter efficient knowledge transfer
Teaching pathology foundation models to accurately predict gene expression with parameter efficient knowledge transfer
Shi Pan
Jianan Chen
Maria Secrier
16
0
0
09 Apr 2025
GECKO: Gigapixel Vision-Concept Contrastive Pretraining in Histopathology
GECKO: Gigapixel Vision-Concept Contrastive Pretraining in Histopathology
S. Kapse
Pushpak Pati
Srikar Yellapragada
Srijan Das
Rajarsi R. Gupta
Joel H. Saltz
Dimitris Samaras
Prateek Prasanna
VLM
41
0
0
01 Apr 2025
PathoHR: Breast Cancer Survival Prediction on High-Resolution Pathological Images
PathoHR: Breast Cancer Survival Prediction on High-Resolution Pathological Images
Y. Luo
Shiru Wang
J. Liu
Jiaxuan Xiao
Rundong Xue
Zeyu Zhang
Hao Zhang
Yu Lu
Yang Zhao
Yutong Xie
42
0
0
23 Mar 2025
ModalTune: Fine-Tuning Slide-Level Foundation Models with Multi-Modal Information for Multi-task Learning in Digital Pathology
ModalTune: Fine-Tuning Slide-Level Foundation Models with Multi-Modal Information for Multi-task Learning in Digital Pathology
Vishwesh Ramanathan
Tony Xu
Pushpak Pati
Faruk Ahmed
Maged Goubran
Anne L. Martel
43
0
0
21 Mar 2025
Multi-Modal Foundation Models for Computational Pathology: A Survey
Multi-Modal Foundation Models for Computational Pathology: A Survey
Dong Li
Guihong Wan
Xintao Wu
Xinyu Wu
Xiaohui Chen
Yi He
Christine G. Lian
Peter K. Sorger
Yevgeniy R. Semenov
Chen Zhao
MedIm
42
0
0
12 Mar 2025
Towards Robust Multimodal Representation: A Unified Approach with Adaptive Experts and Alignment
Nazanin Moradinasab
S. Sengupta
Jiebei Liu
Sana Syed
Donald Brown
58
0
0
12 Mar 2025
MIRROR: Multi-Modal Pathological Self-Supervised Representation Learning via Modality Alignment and Retention
MIRROR: Multi-Modal Pathological Self-Supervised Representation Learning via Modality Alignment and Retention
Tianyi Wang
Jianan Fan
Dingxin Zhang
Dongnan Liu
Yong-quan Xia
Heng Huang
Weidong Cai
34
0
0
01 Mar 2025
AI-powered virtual tissues from spatial proteomics for clinical diagnostics and biomedical discovery
AI-powered virtual tissues from spatial proteomics for clinical diagnostics and biomedical discovery
Johann Wenckstern
Eeshaan Jain
Kiril Vasilev
Matteo Pariset
Andreas Wicki
Gabriele Gut
Charlotte Bunne
32
1
0
10 Jan 2025
Graph Domain Adaptation with Dual-branch Encoder and Two-level Alignment
  for Whole Slide Image-based Survival Prediction
Graph Domain Adaptation with Dual-branch Encoder and Two-level Alignment for Whole Slide Image-based Survival Prediction
Yuntao Shou
Peiqiang Yan
Xingjian Yuan
Xiangyong Cao
Qian Zhao
Deyu Meng
OOD
MedIm
83
5
0
21 Nov 2024
Diagnostic Text-guided Representation Learning in Hierarchical Classification for Pathological Whole Slide Image
Jiawen Li
Qiehe Sun
Renao Yan
Yizhi Wang
Yuqiu Fu
Yani Wei
Tian Guan
Huijuan Shi
Yonghonghe He
Anjia Han
31
3
0
16 Nov 2024
Evaluating Deep Regression Models for WSI-Based Gene-Expression
  Prediction
Evaluating Deep Regression Models for WSI-Based Gene-Expression Prediction
Fredrik K. Gustafsson
Mattias Rantalainen
21
0
0
01 Oct 2024
Interpretable Vision-Language Survival Analysis with Ordinal Inductive Bias for Computational Pathology
Interpretable Vision-Language Survival Analysis with Ordinal Inductive Bias for Computational Pathology
Pei Liu
Luping Ji
Jiaxiang Gou
Bo Fu
Mao Ye
21
2
0
14 Sep 2024
Multistain Pretraining for Slide Representation Learning in Pathology
Multistain Pretraining for Slide Representation Learning in Pathology
Guillaume Jaume
Anurag J. Vaidya
Andrew Zhang
Andrew H. Song
Richard J. Chen
S. Sahai
Dandan Mo
Emilio Madrigal
L. Le
Faisal Mahmood
28
11
0
05 Aug 2024
PathAlign: A vision-language model for whole slide images in
  histopathology
PathAlign: A vision-language model for whole slide images in histopathology
Faruk Ahmed
Andrew Sellergren
Lin Yang
Shawn Xu
Boris Babenko
...
S. Shetty
Daniel Golden
Yun-hui Liu
David F. Steiner
Ellery Wulczyn
LM&MA
VLM
29
13
0
27 Jun 2024
HEST-1k: A Dataset for Spatial Transcriptomics and Histology Image
  Analysis
HEST-1k: A Dataset for Spatial Transcriptomics and Histology Image Analysis
Guillaume Jaume
Paul Doucet
Andrew H. Song
Ming Y. Lu
Cristina Almagro-Pérez
...
Anurag J. Vaidya
Richard J. Chen
Drew F. K. Williamson
Ahrong Kim
Faisal Mahmood
36
28
0
23 Jun 2024
Morphological Prototyping for Unsupervised Slide Representation Learning
  in Computational Pathology
Morphological Prototyping for Unsupervised Slide Representation Learning in Computational Pathology
Andrew H. Song
Richard J. Chen
Tong Ding
Drew F. K. Williamson
Guillaume Jaume
Faisal Mahmood
MedIm
35
27
0
19 May 2024
Task-specific Fine-tuning via Variational Information Bottleneck for
  Weakly-supervised Pathology Whole Slide Image Classification
Task-specific Fine-tuning via Variational Information Bottleneck for Weakly-supervised Pathology Whole Slide Image Classification
Honglin Li
Chenglu Zhu
Yunlong Zhang
Yuxuan Sun
Zhongyi Shui
Wenwei Kuang
S. Zheng
L. Yang
61
56
0
15 Mar 2023
BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image
  Encoders and Large Language Models
BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
Junnan Li
Dongxu Li
Silvio Savarese
Steven C. H. Hoi
VLM
MLLM
244
4,186
0
30 Jan 2023
RankMe: Assessing the downstream performance of pretrained
  self-supervised representations by their rank
RankMe: Assessing the downstream performance of pretrained self-supervised representations by their rank
Q. Garrido
Randall Balestriero
Laurent Najman
Yann LeCun
SSL
39
71
0
05 Oct 2022
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
258
7,337
0
11 Nov 2021
Emerging Properties in Self-Supervised Vision Transformers
Emerging Properties in Self-Supervised Vision Transformers
Mathilde Caron
Hugo Touvron
Ishan Misra
Hervé Jégou
Julien Mairal
Piotr Bojanowski
Armand Joulin
283
5,723
0
29 Apr 2021
Scaling Up Visual and Vision-Language Representation Learning With Noisy
  Text Supervision
Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision
Chao Jia
Yinfei Yang
Ye Xia
Yi-Ting Chen
Zarana Parekh
Hieu H. Pham
Quoc V. Le
Yun-hsuan Sung
Zhen Li
Tom Duerig
VLM
CLIP
293
3,683
0
11 Feb 2021
1