ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.14325
  4. Cited By
Dinomaly: The Less Is More Philosophy in Multi-Class Unsupervised Anomaly Detection

Dinomaly: The Less Is More Philosophy in Multi-Class Unsupervised Anomaly Detection

23 May 2024
Jia Guo
Shuai Lu
Weihang Zhang
Huiqi Li
Huiqi Li
Hongen Liao
    ViT
ArXivPDFHTML

Papers citing "Dinomaly: The Less Is More Philosophy in Multi-Class Unsupervised Anomaly Detection"

17 / 17 papers shown
Title
Learning Multi-view Multi-class Anomaly Detection
Learning Multi-view Multi-class Anomaly Detection
Qianzi Yu
Yang Cao
Yu Kang
43
0
0
30 Apr 2025
GenCLIP: Generalizing CLIP Prompts for Zero-shot Anomaly Detection
GenCLIP: Generalizing CLIP Prompts for Zero-shot Anomaly Detection
Donghyeong Kim
Chaewon Park
Suhwan Cho
Hyeonjeong Lim
Minseok Kang
Jungho Lee
Sangyoun Lee
VLM
30
0
0
21 Apr 2025
HSS-IAD: A Heterogeneous Same-Sort Industrial Anomaly Detection Dataset
HSS-IAD: A Heterogeneous Same-Sort Industrial Anomaly Detection Dataset
Qishan Wang
Shuyong Gao
J. Hu
Jiawen Yu
Xuan Tong
You Li
Wenqiang Zhang
19
0
0
17 Apr 2025
AnomalyR1: A GRPO-based End-to-end MLLM for Industrial Anomaly Detection
AnomalyR1: A GRPO-based End-to-end MLLM for Industrial Anomaly Detection
Yuhao Chao
Jie Liu
J. Tang
Gangshan Wu
21
1
0
16 Apr 2025
Exploring Intrinsic Normal Prototypes within a Single Image for Universal Anomaly Detection
Wei Luo
Yunkang Cao
Haiming Yao
Xiaotian Zhang
Jianan Lou
Y. Cheng
Weiming Shen
Wenyong Yu
50
1
0
04 Mar 2025
ROADS: Robust Prompt-driven Multi-Class Anomaly Detection under Domain
  Shift
ROADS: Robust Prompt-driven Multi-Class Anomaly Detection under Domain Shift
Hossein Kashiani
Niloufar Alipour Talemi
Fatemeh Afghah
81
2
0
25 Nov 2024
SoftPatch: Unsupervised Anomaly Detection with Noisy Data
SoftPatch: Unsupervised Anomaly Detection with Noisy Data
Xi Jiang
Ying Chen
Qiang Nie
Y. Liu
Jianlin Liu
Jinbao Wang
WU Kai
Chengjie Wang
Feng Zheng
109
34
0
21 Mar 2024
Industrial Anomaly Detection and Localization Using Weakly-Supervised
  Residual Transformers
Industrial Anomaly Detection and Localization Using Weakly-Supervised Residual Transformers
Hanxi Li
Jing Wu
Lin Yuanbo Wu
Hao Chen
Deyin Liu
Mingwen Wang
Peng Wang
ViT
27
4
0
06 Jun 2023
SimpleNet: A Simple Network for Image Anomaly Detection and Localization
SimpleNet: A Simple Network for Image Anomaly Detection and Localization
Zhikang Liu
Yiming Zhou
Yuansheng Xu
Zilei Wang
64
219
0
27 Mar 2023
WinCLIP: Zero-/Few-Shot Anomaly Classification and Segmentation
WinCLIP: Zero-/Few-Shot Anomaly Classification and Segmentation
Jongheon Jeong
Yang Zou
Taewan Kim
Dongqing Zhang
Avinash Ravichandran
O. Dabeer
VLM
61
92
0
26 Mar 2023
Anomaly Detection Requires Better Representations
Anomaly Detection Requires Better Representations
Tal Reiss
Niv Cohen
Eliahu Horwitz
Ron Abutbul
Yedid Hoshen
OOD
AI4TS
SSL
31
21
0
19 Oct 2022
Omni-frequency Channel-selection Representations for Unsupervised
  Anomaly Detection
Omni-frequency Channel-selection Representations for Unsupervised Anomaly Detection
Yufei Liang
Jiangning Zhang
Shiwei Zhao
Ru-Chwen Wu
Yong-Jin Liu
Shuwen Pan
105
114
0
01 Mar 2022
Anomaly Detection via Reverse Distillation from One-Class Embedding
Anomaly Detection via Reverse Distillation from One-Class Embedding
Hanqiu Deng
Xingyu Li
UQCV
98
299
0
26 Jan 2022
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
255
7,337
0
11 Nov 2021
Emerging Properties in Self-Supervised Vision Transformers
Emerging Properties in Self-Supervised Vision Transformers
Mathilde Caron
Hugo Touvron
Ishan Misra
Hervé Jégou
Julien Mairal
Piotr Bojanowski
Armand Joulin
283
5,723
0
29 Apr 2021
DFR: Deep Feature Reconstruction for Unsupervised Anomaly Segmentation
DFR: Deep Feature Reconstruction for Unsupervised Anomaly Segmentation
Jie Yang
Yong Shi
Zhiquan Qi
UQCV
84
114
0
13 Dec 2020
Improving neural networks by preventing co-adaptation of feature
  detectors
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
237
7,597
0
03 Jul 2012
1