Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2405.15706
Cited By
The Impact of Geometric Complexity on Neural Collapse in Transfer Learning
24 May 2024
Michael Munn
Benoit Dherin
Javier Gonzalvo
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Impact of Geometric Complexity on Neural Collapse in Transfer Learning"
8 / 8 papers shown
Title
Leveraging free energy in pretraining model selection for improved fine-tuning
Michael Munn
Susan Wei
19
0
0
08 Oct 2024
Sparse Modular Activation for Efficient Sequence Modeling
Liliang Ren
Yang Liu
Shuohang Wang
Yichong Xu
Chenguang Zhu
Chengxiang Zhai
43
13
0
19 Jun 2023
Why neural networks find simple solutions: the many regularizers of geometric complexity
Benoit Dherin
Michael Munn
M. Rosca
David Barrett
53
30
0
27 Sep 2022
Stochastic Training is Not Necessary for Generalization
Jonas Geiping
Micah Goldblum
Phillip E. Pope
Michael Moeller
Tom Goldstein
81
72
0
29 Sep 2021
Zero-Shot Text-to-Image Generation
Aditya A. Ramesh
Mikhail Pavlov
Gabriel Goh
Scott Gray
Chelsea Voss
Alec Radford
Mark Chen
Ilya Sutskever
VLM
253
4,735
0
24 Feb 2021
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
D. Song
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
264
1,798
0
14 Dec 2020
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
273
2,878
0
15 Sep 2016
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
175
1,182
0
30 Nov 2014
1