ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.00438
  4. Cited By
Stein Random Feature Regression
v1v2 (latest)

Stein Random Feature Regression

1 June 2024
Houston Warren
Rafael Oliveira
Fabio Ramos
    BDL
ArXiv (abs)PDFHTML

Papers citing "Stein Random Feature Regression"

13 / 13 papers shown
Title
Integrated Variational Fourier Features for Fast Spatial Modelling with
  Gaussian Processes
Integrated Variational Fourier Features for Fast Spatial Modelling with Gaussian Processes
Talay M Cheema
C. Rasmussen
GP
122
2
0
27 Aug 2023
Random Features for Kernel Approximation: A Survey on Algorithms,
  Theory, and Beyond
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
124
176
0
23 Apr 2020
Stein Variational Gradient Descent With Matrix-Valued Kernels
Stein Variational Gradient Descent With Matrix-Valued Kernels
Dilin Wang
Ziyang Tang
Minh Nguyen
Qiang Liu
90
62
0
28 Oct 2019
Harmonizable mixture kernels with variational Fourier features
Harmonizable mixture kernels with variational Fourier features
Zheyan Shen
Markus Heinonen
Samuel Kaski
79
17
0
10 Oct 2018
Spatial Mapping with Gaussian Processes and Nonstationary Fourier
  Features
Spatial Mapping with Gaussian Processes and Nonstationary Fourier Features
Jean-François Ton
Seth Flaxman
Dino Sejdinovic
Samir Bhatt
GP
73
54
0
15 Nov 2017
Variational Fourier features for Gaussian processes
Variational Fourier features for Gaussian processes
J. Hensman
N. Durrande
Arno Solin
VLM
82
202
0
21 Nov 2016
Orthogonal Random Features
Orthogonal Random Features
Felix X. Yu
A. Suresh
K. Choromanski
D. Holtmann-Rice
Sanjiv Kumar
99
222
0
28 Oct 2016
Stein Variational Gradient Descent: A General Purpose Bayesian Inference
  Algorithm
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
102
1,094
0
16 Aug 2016
Deep Kernel Learning
Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
261
889
0
06 Nov 2015
Scalable Variational Gaussian Process Classification
Scalable Variational Gaussian Process Classification
J. Hensman
A. G. Matthews
Zoubin Ghahramani
BDL
89
646
0
07 Nov 2014
Gaussian Process Kernels for Pattern Discovery and Extrapolation
Gaussian Process Kernels for Pattern Discovery and Extrapolation
A. Wilson
Ryan P. Adams
GP
103
611
0
18 Feb 2013
Kernels for Vector-Valued Functions: a Review
Kernels for Vector-Valued Functions: a Review
Mauricio A. Alvarez
Lorenzo Rosasco
Neil D. Lawrence
GP
222
930
0
30 Jun 2011
Slice sampling covariance hyperparameters of latent Gaussian models
Slice sampling covariance hyperparameters of latent Gaussian models
Iain Murray
Ryan P. Adams
129
232
0
04 Jun 2010
1