ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.02981
  4. Cited By
Local vs. Global Interpretability: A Computational Complexity
  Perspective

Local vs. Global Interpretability: A Computational Complexity Perspective

5 June 2024
Shahaf Bassan
Guy Amir
Guy Katz
ArXivPDFHTML

Papers citing "Local vs. Global Interpretability: A Computational Complexity Perspective"

11 / 11 papers shown
Title
Evaluating Explanations: An Explanatory Virtues Framework for Mechanistic Interpretability -- The Strange Science Part I.ii
Evaluating Explanations: An Explanatory Virtues Framework for Mechanistic Interpretability -- The Strange Science Part I.ii
Kola Ayonrinde
Louis Jaburi
XAI
83
1
0
02 May 2025
On the Complexity of Global Necessary Reasons to Explain Classification
On the Complexity of Global Necessary Reasons to Explain Classification
M. Calautti
Enrico Malizia
Cristian Molinaro
FAtt
63
0
0
12 Jan 2025
Logic-Based Explainability in Machine Learning
Logic-Based Explainability in Machine Learning
Sasha Rubin
LRM
XAI
47
39
0
24 Oct 2022
Computing Abductive Explanations for Boosted Trees
Computing Abductive Explanations for Boosted Trees
Gilles Audemard
Jean-Marie Lagniez
Pierre Marquis
N. Szczepanski
26
12
0
16 Sep 2022
Verifying Learning-Based Robotic Navigation Systems
Verifying Learning-Based Robotic Navigation Systems
Guy Amir
Davide Corsi
Raz Yerushalmi
Luca Marzari
D. Harel
Alessandro Farinelli
Guy Katz
94
37
0
26 May 2022
On Tackling Explanation Redundancy in Decision Trees
On Tackling Explanation Redundancy in Decision Trees
Yacine Izza
Alexey Ignatiev
Sasha Rubin
FAtt
48
58
0
20 May 2022
A Survey on Neural Network Interpretability
A Survey on Neural Network Interpretability
Yu Zhang
Peter Tiño
A. Leonardis
K. Tang
FaML
XAI
144
661
0
28 Dec 2020
Model Interpretability through the Lens of Computational Complexity
Model Interpretability through the Lens of Computational Complexity
Pablo Barceló
Mikaël Monet
Jorge A. Pérez
Bernardo Subercaseaux
121
94
0
23 Oct 2020
A Survey on Bias and Fairness in Machine Learning
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
323
4,212
0
23 Aug 2019
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
254
3,684
0
28 Feb 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
231
1,837
0
03 Feb 2017
1