Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
All Papers
0 / 0 papers shown
Title
Home
Papers
2406.03143
Cited By
v1
v2
v3 (latest)
ZeroPur: Succinct Training-Free Adversarial Purification
5 June 2024
Xiuli Bi
Zonglin Yang
Bo Liu
Xiaodong Cun
Chi-Man Pun
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"ZeroPur: Succinct Training-Free Adversarial Purification"
50 / 56 papers shown
Title
Adversarial Training on Purification (AToP): Advancing Both Robustness and Generalization
Guang Lin
Chao Li
Jianhai Zhang
Toshihisa Tanaka
Qibin Zhao
271
22
0
29 Jan 2024
Balance, Imbalance, and Rebalance: Understanding Robust Overfitting from a Minimax Game Perspective
Neural Information Processing Systems (NeurIPS), 2023
Yifei Wang
Liangchen Li
Jiansheng Yang
Zhouchen Lin
Yisen Wang
220
19
0
30 Oct 2023
DiffAttack: Evasion Attacks Against Diffusion-Based Adversarial Purification
Neural Information Processing Systems (NeurIPS), 2023
Mintong Kang
Basel Alomair
Yue Liu
258
46
0
27 Oct 2023
Decoupled Kullback-Leibler Divergence Loss
Neural Information Processing Systems (NeurIPS), 2023
Jiequan Cui
Zhuotao Tian
Zhisheng Zhong
Xiaojuan Qi
Bei Yu
Hanwang Zhang
213
68
0
23 May 2023
Robust Evaluation of Diffusion-Based Adversarial Purification
IEEE International Conference on Computer Vision (ICCV), 2023
M. Lee
Dongwoo Kim
315
80
0
16 Mar 2023
Better Diffusion Models Further Improve Adversarial Training
International Conference on Machine Learning (ICML), 2023
Zekai Wang
Tianyu Pang
Chao Du
Min Lin
Weiwei Liu
Shuicheng Yan
DiffM
379
277
0
09 Feb 2023
Exploring and Exploiting Decision Boundary Dynamics for Adversarial Robustness
International Conference on Learning Representations (ICLR), 2023
Yuancheng Xu
Yanchao Sun
Micah Goldblum
Tom Goldstein
Furong Huang
AAML
268
47
0
06 Feb 2023
Data Augmentation Alone Can Improve Adversarial Training
International Conference on Learning Representations (ICLR), 2023
Lin Li
Michael W. Spratling
161
63
0
24 Jan 2023
DISCO: Adversarial Defense with Local Implicit Functions
Neural Information Processing Systems (NeurIPS), 2022
Chih-Hui Ho
Nuno Vasconcelos
AAML
349
51
0
11 Dec 2022
Efficient and Effective Augmentation Strategy for Adversarial Training
Neural Information Processing Systems (NeurIPS), 2022
Sravanti Addepalli
Samyak Jain
R. Venkatesh Babu
AAML
170
69
0
27 Oct 2022
Towards Efficient Adversarial Training on Vision Transformers
European Conference on Computer Vision (ECCV), 2022
Boxi Wu
Jindong Gu
Zhifeng Li
Deng Cai
Xiaofei He
Wei Liu
ViT
AAML
217
45
0
21 Jul 2022
Guided Diffusion Model for Adversarial Purification
Jinyi Wang
Zhaoyang Lyu
Dahua Lin
Bo Dai
Hongfei Fu
DiffM
428
109
0
30 May 2022
Diffusion Models for Adversarial Purification
International Conference on Machine Learning (ICML), 2022
Weili Nie
Brandon Guo
Yujia Huang
Chaowei Xiao
Arash Vahdat
Anima Anandkumar
WIGM
438
572
0
16 May 2022
Formulating Robustness Against Unforeseen Attacks
Neural Information Processing Systems (NeurIPS), 2022
Sihui Dai
Saeed Mahloujifar
Prateek Mittal
OOD
AAML
268
9
0
28 Apr 2022
Generative Adversarial Networks
International Conference on Computing Communication and Networking Technologies (ICCCNT), 2021
Gilad Cohen
Raja Giryes
GAN
753
30,270
0
01 Mar 2022
Robustness and Accuracy Could Be Reconcilable by (Proper) Definition
International Conference on Machine Learning (ICML), 2022
Tianyu Pang
Min Lin
Xiao Yang
Junyi Zhu
Shuicheng Yan
323
145
0
21 Feb 2022
Mutual Adversarial Training: Learning together is better than going alone
Jiang-Long Liu
Chun Pong Lau
Hossein Souri
Soheil Feizi
Ramalingam Chellappa
OOD
AAML
156
26
0
09 Dec 2021
Subspace Adversarial Training
Tao Li
Yingwen Wu
Sizhe Chen
Kun Fang
Xiaolin Huang
AAML
OOD
220
64
0
24 Nov 2021
Masked Autoencoders Are Scalable Vision Learners
Computer Vision and Pattern Recognition (CVPR), 2021
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
1.6K
9,791
0
11 Nov 2021
Are Transformers More Robust Than CNNs?
Neural Information Processing Systems (NeurIPS), 2021
Yutong Bai
Jieru Mei
Alan Yuille
Cihang Xie
ViT
AAML
423
309
0
10 Nov 2021
Improving Robustness using Generated Data
Sven Gowal
Sylvestre-Alvise Rebuffi
Olivia Wiles
Florian Stimberg
D. A. Calian
Timothy A. Mann
297
341
0
18 Oct 2021
AID-Purifier: A Light Auxiliary Network for Boosting Adversarial Defense
Duhun Hwang
Eunjung Lee
Wonjong Rhee
AAML
299
19
0
14 Jul 2021
Adversarial purification with Score-based generative models
International Conference on Machine Learning (ICML), 2021
Jongmin Yoon
Sung Ju Hwang
Juho Lee
DiffM
170
176
0
11 Jun 2021
Robust Learning Meets Generative Models: Can Proxy Distributions Improve Adversarial Robustness?
International Conference on Learning Representations (ICLR), 2021
Vikash Sehwag
Saeed Mahloujifar
Tinashe Handina
Sihui Dai
Chong Xiang
M. Chiang
Prateek Mittal
OOD
198
143
0
19 Apr 2021
Adversarial Attacks are Reversible with Natural Supervision
IEEE International Conference on Computer Vision (ICCV), 2021
Chengzhi Mao
Mia Chiquer
Hao Wang
Junfeng Yang
Carl Vondrick
BDL
AAML
336
65
0
26 Mar 2021
Fixing Data Augmentation to Improve Adversarial Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
204
296
0
02 Mar 2021
Score-Based Generative Modeling through Stochastic Differential Equations
International Conference on Learning Representations (ICLR), 2020
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffM
SyDa
1.1K
8,584
0
26 Nov 2020
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
627
803
0
19 Oct 2020
Torchattacks: A PyTorch Repository for Adversarial Attacks
Hoki Kim
449
249
0
24 Sep 2020
Do Adversarially Robust ImageNet Models Transfer Better?
Neural Information Processing Systems (NeurIPS), 2020
Hadi Salman
Andrew Ilyas
Logan Engstrom
Ashish Kapoor
Aleksander Madry
294
462
0
16 Jul 2020
Understanding and Improving Fast Adversarial Training
Maksym Andriushchenko
Nicolas Flammarion
AAML
247
324
0
06 Jul 2020
Perceptual Adversarial Robustness: Defense Against Unseen Threat Models
International Conference on Learning Representations (ICLR), 2020
Cassidy Laidlaw
Sahil Singla
Soheil Feizi
AAML
OOD
339
208
0
22 Jun 2020
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
4.2K
24,966
0
19 Jun 2020
Stochastic Security: Adversarial Defense Using Long-Run Dynamics of Energy-Based Models
International Conference on Learning Representations (ICLR), 2020
Mitch Hill
Jonathan Mitchell
Song-Chun Zhu
AAML
175
83
0
27 May 2020
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
International Conference on Machine Learning (ICML), 2020
Francesco Croce
Matthias Hein
AAML
588
2,145
0
03 Mar 2020
Overfitting in adversarially robust deep learning
International Conference on Machine Learning (ICML), 2020
Leslie Rice
Eric Wong
Zico Kolter
497
882
0
26 Feb 2020
Fast is better than free: Revisiting adversarial training
International Conference on Learning Representations (ICLR), 2020
Eric Wong
Leslie Rice
J. Zico Kolter
AAML
OOD
673
1,288
0
12 Jan 2020
Adversarial Training for Free!
Neural Information Processing Systems (NeurIPS), 2019
Ali Shafahi
Mahyar Najibi
Amin Ghiasi
Zheng Xu
John P. Dickerson
Christoph Studer
L. Davis
Gavin Taylor
Tom Goldstein
AAML
537
1,358
0
29 Apr 2019
Theoretically Principled Trade-off between Robustness and Accuracy
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Sai Li
654
2,826
0
24 Jan 2019
Learning Implicit Fields for Generative Shape Modeling
Zhiqin Chen
Hao Zhang
AI4CE
3DV
510
1,746
0
06 Dec 2018
Adversarial Defense by Stratified Convolutional Sparse Coding
Bo Sun
Nian-hsuan Tsai
Fangchen Liu
Ronald Yu
Hao Su
AAML
239
83
0
30 Nov 2018
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models
Pouya Samangouei
Maya Kabkab
Rama Chellappa
AAML
GAN
468
1,224
0
17 May 2018
Improving Transferability of Adversarial Examples with Input Diversity
Cihang Xie
Zhishuai Zhang
Yuyin Zhou
Song Bai
Jianyu Wang
Zhou Ren
Alan Yuille
AAML
315
1,285
0
19 Mar 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
1.2K
3,357
0
01 Feb 2018
Generative Image Inpainting with Contextual Attention
Jiahui Yu
Zhe Lin
Jimei Yang
Xiaohui Shen
Xin Lu
Thomas S. Huang
GAN
DiffM
301
2,444
0
24 Jan 2018
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric
Richard Y. Zhang
Phillip Isola
Alexei A. Efros
Eli Shechtman
Oliver Wang
EGVM
1.0K
14,911
0
11 Jan 2018
Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality
Jiabo He
Yue Liu
Yisen Wang
S. Erfani
S. Wijewickrema
Grant Schoenebeck
Basel Alomair
Michael E. Houle
James Bailey
AAML
352
791
0
08 Jan 2018
Countering Adversarial Images using Input Transformations
Chuan Guo
Mayank Rana
Moustapha Cissé
Laurens van der Maaten
AAML
569
1,518
0
31 Oct 2017
PixelDefend: Leveraging Generative Models to Understand and Defend against Adversarial Examples
International Conference on Learning Representations (ICLR), 2017
Yang Song
Taesup Kim
Sebastian Nowozin
Stefano Ermon
Nate Kushman
AAML
345
819
0
30 Oct 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
1.2K
13,556
0
19 Jun 2017
1
2
Next