ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.05766
  4. Cited By
Gentle-CLIP: Exploring Aligned Semantic In Low-Quality Multimodal Data
  With Soft Alignment

Gentle-CLIP: Exploring Aligned Semantic In Low-Quality Multimodal Data With Soft Alignment

9 June 2024
Zijia Song
Z. Zang
Yelin Wang
Guozheng Yang
Jiangbin Zheng
Kaicheng Yu
Wanyu Chen
Stan Z. Li
ArXivPDFHTML

Papers citing "Gentle-CLIP: Exploring Aligned Semantic In Low-Quality Multimodal Data With Soft Alignment"

6 / 6 papers shown
Title
The Platonic Representation Hypothesis
The Platonic Representation Hypothesis
Minyoung Huh
Brian Cheung
Tongzhou Wang
Phillip Isola
72
107
0
13 May 2024
Interpreting CLIP with Sparse Linear Concept Embeddings (SpLiCE)
Interpreting CLIP with Sparse Linear Concept Embeddings (SpLiCE)
Usha Bhalla
Alexander X. Oesterling
Suraj Srinivas
Flavio du Pin Calmon
Himabindu Lakkaraju
21
35
0
16 Feb 2024
Context Recovery and Knowledge Retrieval: A Novel Two-Stream Framework
  for Video Anomaly Detection
Context Recovery and Knowledge Retrieval: A Novel Two-Stream Framework for Video Anomaly Detection
Congqi Cao
Yue Lu
Yanning Zhang
45
19
0
07 Sep 2022
BLIP: Bootstrapping Language-Image Pre-training for Unified
  Vision-Language Understanding and Generation
BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation
Junnan Li
Dongxu Li
Caiming Xiong
S. Hoi
MLLM
BDL
VLM
CLIP
382
4,010
0
28 Jan 2022
Scaling Up Visual and Vision-Language Representation Learning With Noisy
  Text Supervision
Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision
Chao Jia
Yinfei Yang
Ye Xia
Yi-Ting Chen
Zarana Parekh
Hieu H. Pham
Quoc V. Le
Yun-hsuan Sung
Zhen Li
Tom Duerig
VLM
CLIP
293
2,875
0
11 Feb 2021
In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label
  Selection Framework for Semi-Supervised Learning
In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label Selection Framework for Semi-Supervised Learning
Mamshad Nayeem Rizve
Kevin Duarte
Y. S. Rawat
M. Shah
200
501
0
15 Jan 2021
1