Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2406.06158
Cited By
Get rich quick: exact solutions reveal how unbalanced initializations promote rapid feature learning
10 June 2024
D. Kunin
Allan Raventós
Clémentine Dominé
Feng Chen
David Klindt
Andrew M. Saxe
Surya Ganguli
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Get rich quick: exact solutions reveal how unbalanced initializations promote rapid feature learning"
9 / 9 papers shown
Title
On the Cone Effect in the Learning Dynamics
Zhanpeng Zhou
Yongyi Yang
Jie Ren
Mahito Sugiyama
Junchi Yan
46
0
0
20 Mar 2025
Deep Linear Network Training Dynamics from Random Initialization: Data, Width, Depth, and Hyperparameter Transfer
Blake Bordelon
C. Pehlevan
AI4CE
59
1
0
04 Feb 2025
Fast Training of Sinusoidal Neural Fields via Scaling Initialization
Taesun Yeom
Sangyoon Lee
Jaeho Lee
46
2
0
07 Oct 2024
How Feature Learning Can Improve Neural Scaling Laws
Blake Bordelon
Alexander B. Atanasov
C. Pehlevan
46
11
0
26 Sep 2024
From Lazy to Rich: Exact Learning Dynamics in Deep Linear Networks
Clémentine Dominé
Nicolas Anguita
A. Proca
Lukas Braun
D. Kunin
P. Mediano
Andrew M. Saxe
30
3
0
22 Sep 2024
Asymptotics of feature learning in two-layer networks after one gradient-step
Hugo Cui
Luca Pesce
Yatin Dandi
Florent Krzakala
Yue M. Lu
Lenka Zdeborová
Bruno Loureiro
MLT
44
16
0
07 Feb 2024
Neural Mechanics: Symmetry and Broken Conservation Laws in Deep Learning Dynamics
D. Kunin
Javier Sagastuy-Breña
Surya Ganguli
Daniel L. K. Yamins
Hidenori Tanaka
97
77
0
08 Dec 2020
The large learning rate phase of deep learning: the catapult mechanism
Aitor Lewkowycz
Yasaman Bahri
Ethan Dyer
Jascha Narain Sohl-Dickstein
Guy Gur-Ari
ODL
150
232
0
04 Mar 2020
Trainability and Accuracy of Neural Networks: An Interacting Particle System Approach
Grant M. Rotskoff
Eric Vanden-Eijnden
59
114
0
02 May 2018
1