Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2406.06279
Cited By
Multi-Prompting Decoder Helps Better Language Understanding
10 June 2024
Zifeng Cheng
Zhaoling Chen
Zhiwei Jiang
Yafeng Yin
Shiping Ge
Yuliang Liu
Qing Gu
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Multi-Prompting Decoder Helps Better Language Understanding"
7 / 7 papers shown
Title
BBTv2: Towards a Gradient-Free Future with Large Language Models
Tianxiang Sun
Zhengfu He
Hong Qian
Yunhua Zhou
Xuanjing Huang
Xipeng Qiu
100
53
0
23 May 2022
Template-free Prompt Tuning for Few-shot NER
Ruotian Ma
Xin Zhou
Tao Gui
Y. Tan
Linyang Li
Qi Zhang
Xuanjing Huang
VLM
143
176
0
28 Sep 2021
Fantastically Ordered Prompts and Where to Find Them: Overcoming Few-Shot Prompt Order Sensitivity
Yao Lu
Max Bartolo
Alastair Moore
Sebastian Riedel
Pontus Stenetorp
AILaw
LRM
274
1,114
0
18 Apr 2021
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
278
3,784
0
18 Apr 2021
Making Pre-trained Language Models Better Few-shot Learners
Tianyu Gao
Adam Fisch
Danqi Chen
241
1,898
0
31 Dec 2020
Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference
Timo Schick
Hinrich Schütze
251
1,584
0
21 Jan 2020
Language Models as Knowledge Bases?
Fabio Petroni
Tim Rocktaschel
Patrick Lewis
A. Bakhtin
Yuxiang Wu
Alexander H. Miller
Sebastian Riedel
KELM
AI4MH
396
2,576
0
03 Sep 2019
1