ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.07955
  4. Cited By
How Interpretable Are Interpretable Graph Neural Networks?

How Interpretable Are Interpretable Graph Neural Networks?

12 June 2024
Yongqiang Chen
Yatao Bian
Bo Han
James Cheng
ArXivPDFHTML

Papers citing "How Interpretable Are Interpretable Graph Neural Networks?"

15 / 15 papers shown
Title
Mind the Label Shift of Augmentation-based Graph OOD Generalization
Mind the Label Shift of Augmentation-based Graph OOD Generalization
Junchi Yu
Jian Liang
R. He
34
27
0
27 Mar 2023
Towards Better Out-of-Distribution Generalization of Neural Algorithmic
  Reasoning Tasks
Towards Better Out-of-Distribution Generalization of Neural Algorithmic Reasoning Tasks
Sadegh Mahdavi
Kevin Swersky
Thomas Kipf
Milad Hashemi
Christos Thrampoulidis
Renjie Liao
LRM
OOD
NAI
38
26
0
01 Nov 2022
A Survey on Graph Counterfactual Explanations: Definitions, Methods,
  Evaluation, and Research Challenges
A Survey on Graph Counterfactual Explanations: Definitions, Methods, Evaluation, and Research Challenges
Mario Alfonso Prado-Romero
Bardh Prenkaj
Giovanni Stilo
F. Giannotti
CML
27
30
0
21 Oct 2022
Empowering Graph Representation Learning with Test-Time Graph
  Transformation
Empowering Graph Representation Learning with Test-Time Graph Transformation
Wei Jin
Tong Zhao
Jiayu Ding
Yozen Liu
Jiliang Tang
Neil Shah
OOD
84
59
0
07 Oct 2022
OOD Link Prediction Generalization Capabilities of Message-Passing GNNs
  in Larger Test Graphs
OOD Link Prediction Generalization Capabilities of Message-Passing GNNs in Larger Test Graphs
Yangze Zhou
Gitta Kutyniok
Bruno Ribeiro
OODD
AI4CE
70
37
0
30 May 2022
Discovering Invariant Rationales for Graph Neural Networks
Discovering Invariant Rationales for Graph Neural Networks
Yingmin Wu
Xiang Wang
An Zhang
Xiangnan He
Tat-Seng Chua
OOD
AI4CE
89
170
0
30 Jan 2022
DrugOOD: Out-of-Distribution (OOD) Dataset Curator and Benchmark for
  AI-aided Drug Discovery -- A Focus on Affinity Prediction Problems with Noise
  Annotations
DrugOOD: Out-of-Distribution (OOD) Dataset Curator and Benchmark for AI-aided Drug Discovery -- A Focus on Affinity Prediction Problems with Noise Annotations
Yuanfeng Ji
Lu Zhang
Jiaxiang Wu
Bing Wu
Long-Kai Huang
...
Ping Luo
Shuigeng Zhou
Junzhou Huang
Peilin Zhao
Yatao Bian
OOD
54
73
0
24 Jan 2022
Learning ground states of quantum Hamiltonians with graph networks
Learning ground states of quantum Hamiltonians with graph networks
Dmitrii Kochkov
Tobias Pfaff
Alvaro Sanchez-Gonzalez
Peter W. Battaglia
B. Clark
31
26
0
12 Oct 2021
A Meta-Learning Approach for Training Explainable Graph Neural Networks
A Meta-Learning Approach for Training Explainable Graph Neural Networks
Indro Spinelli
Simone Scardapane
A. Uncini
29
19
0
20 Sep 2021
Explainability in Graph Neural Networks: A Taxonomic Survey
Explainability in Graph Neural Networks: A Taxonomic Survey
Hao Yuan
Haiyang Yu
Shurui Gui
Shuiwang Ji
159
463
0
31 Dec 2020
Graph Information Bottleneck
Graph Information Bottleneck
Tailin Wu
Hongyu Ren
Pan Li
J. Leskovec
AAML
88
222
0
24 Oct 2020
No Free Lunch for Approximate MCMC
No Free Lunch for Approximate MCMC
J. Johndrow
Natesh S. Pillai
Aaron Smith
51
18
0
23 Oct 2020
From Local Structures to Size Generalization in Graph Neural Networks
From Local Structures to Size Generalization in Graph Neural Networks
Gilad Yehudai
Ethan Fetaya
E. Meirom
Gal Chechik
Haggai Maron
GNN
AI4CE
128
112
0
17 Oct 2020
Invariant Rationalization
Invariant Rationalization
Shiyu Chang
Yang Zhang
Mo Yu
Tommi Jaakkola
179
197
0
22 Mar 2020
Categorical Reparameterization with Gumbel-Softmax
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
75
5,262
0
03 Nov 2016
1