ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.08853
  4. Cited By
Assessment of Uncertainty Quantification in Universal Differential
  Equations

Assessment of Uncertainty Quantification in Universal Differential Equations

13 June 2024
Nina Schmid
David Fernandes del Pozo
Willem Waegeman
Jan Hasenauer
    AI4CE
ArXivPDFHTML

Papers citing "Assessment of Uncertainty Quantification in Universal Differential Equations"

3 / 3 papers shown
Title
pyPESTO: A modular and scalable tool for parameter estimation for
  dynamic models
pyPESTO: A modular and scalable tool for parameter estimation for dynamic models
Yannik Schälte
Fabian Fröhlich
P. J. Jost
Jakob Vanhoefer
Dilan Pathirana
...
Stephan Grein
E. Dudkin
Domagoj Dorešić
Daniel Weindl
Jan Hasenauer
13
24
0
02 May 2023
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,652
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,109
0
06 Jun 2015
1