ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.09949
  4. Cited By
Neural Concept Binder

Neural Concept Binder

14 June 2024
Wolfgang Stammer
Antonia Wüst
David Steinmann
Kristian Kersting
    OCL
ArXivPDFHTML

Papers citing "Neural Concept Binder"

14 / 14 papers shown
Title
Bongard in Wonderland: Visual Puzzles that Still Make AI Go Mad?
Bongard in Wonderland: Visual Puzzles that Still Make AI Go Mad?
Antonia Wüst
Tim Nelson Tobiasch
Lukas Helff
Inga Ibs
Wolfgang Stammer
D. Dhami
Constantin Rothkopf
Kristian Kersting
CoGe
ReLM
VLM
LRM
52
1
0
25 Oct 2024
BlendRL: A Framework for Merging Symbolic and Neural Policy Learning
BlendRL: A Framework for Merging Symbolic and Neural Policy Learning
Hikaru Shindo
Quentin Delfosse
D. Dhami
Kristian Kersting
33
3
0
15 Oct 2024
Pix2Code: Learning to Compose Neural Visual Concepts as Programs
Pix2Code: Learning to Compose Neural Visual Concepts as Programs
Antonia Wüst
Wolfgang Stammer
Quentin Delfosse
D. Dhami
Kristian Kersting
36
13
0
13 Feb 2024
Where is the Truth? The Risk of Getting Confounded in a Continual World
Where is the Truth? The Risk of Getting Confounded in a Continual World
Florian Peter Busch
Roshni Kamath
Rupert Mitchell
Wolfgang Stammer
Kristian Kersting
Martin Mundt
CML
CLL
19
4
0
09 Feb 2024
Symbol Correctness in Deep Neural Networks Containing Symbolic Layers
Symbol Correctness in Deep Neural Networks Containing Symbolic Layers
Aaron Bembenek
Toby Murray
NAI
30
1
0
06 Feb 2024
SymbolicAI: A framework for logic-based approaches combining generative
  models and solvers
SymbolicAI: A framework for logic-based approaches combining generative models and solvers
Marius-Constantin Dinu
Claudiu Leoveanu-Condrei
Markus Holzleitner
Werner Zellinger
Sepp Hochreiter
28
8
0
01 Feb 2024
Interpretable Neural-Symbolic Concept Reasoning
Interpretable Neural-Symbolic Concept Reasoning
Pietro Barbiero
Gabriele Ciravegna
Francesco Giannini
M. Zarlenga
Lucie Charlotte Magister
Alberto Tonda
Pietro Lio'
F. Precioso
M. Jamnik
G. Marra
NAI
LRM
56
37
0
27 Apr 2023
GlanceNets: Interpretabile, Leak-proof Concept-based Models
GlanceNets: Interpretabile, Leak-proof Concept-based Models
Emanuele Marconato
Andrea Passerini
Stefano Teso
96
64
0
31 May 2022
Interactive Disentanglement: Learning Concepts by Interacting with their
  Prototype Representations
Interactive Disentanglement: Learning Concepts by Interacting with their Prototype Representations
Wolfgang Stammer
Marius Memmel
P. Schramowski
Kristian Kersting
76
25
0
04 Dec 2021
Emergent Symbols through Binding in External Memory
Emergent Symbols through Binding in External Memory
Taylor W. Webb
I. Sinha
J. Cohen
59
62
0
29 Dec 2020
On the Binding Problem in Artificial Neural Networks
On the Binding Problem in Artificial Neural Networks
Klaus Greff
Sjoerd van Steenkiste
Jürgen Schmidhuber
OCL
224
252
0
09 Dec 2020
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
168
311
0
07 Feb 2020
On Completeness-aware Concept-Based Explanations in Deep Neural Networks
On Completeness-aware Concept-Based Explanations in Deep Neural Networks
Chih-Kuan Yeh
Been Kim
Sercan Ö. Arik
Chun-Liang Li
Tomas Pfister
Pradeep Ravikumar
FAtt
120
293
0
17 Oct 2019
Categorical Reparameterization with Gumbel-Softmax
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
75
5,262
0
03 Nov 2016
1