ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.15104
  4. Cited By
Deciphering the Definition of Adversarial Robustness for post-hoc OOD Detectors

Deciphering the Definition of Adversarial Robustness for post-hoc OOD Detectors

21 June 2024
Peter Lorenz
Mario Fernandez
Jens Müller
Ullrich Kothe
    AAML
ArXivPDFHTML

Papers citing "Deciphering the Definition of Adversarial Robustness for post-hoc OOD Detectors"

19 / 19 papers shown
Title
AttackBench: Evaluating Gradient-based Attacks for Adversarial Examples
AttackBench: Evaluating Gradient-based Attacks for Adversarial Examples
Antonio Emanuele Cinà
Jérôme Rony
Maura Pintor
Luca Demetrio
Ambra Demontis
Battista Biggio
Ismail Ben Ayed
Fabio Roli
ELM
AAML
SILM
44
6
0
30 Apr 2024
Out-of-Distribution Data: An Acquaintance of Adversarial Examples -- A
  Survey
Out-of-Distribution Data: An Acquaintance of Adversarial Examples -- A Survey
Naveen Karunanayake
Ravin Gunawardena
Suranga Seneviratne
Sanjay Chawla
OOD
30
5
0
08 Apr 2024
Adversarial Examples are Misaligned in Diffusion Model Manifolds
Adversarial Examples are Misaligned in Diffusion Model Manifolds
P. Lorenz
Ricard Durall
Jansi Keuper
DiffM
28
1
0
12 Jan 2024
Scaling for Training Time and Post-hoc Out-of-distribution Detection
  Enhancement
Scaling for Training Time and Post-hoc Out-of-distribution Detection Enhancement
Kai Xu
Rongyu Chen
Gianni Franchi
Angela Yao
OODD
38
31
0
30 Sep 2023
Your Out-of-Distribution Detection Method is Not Robust!
Your Out-of-Distribution Detection Method is Not Robust!
Mohammad Azizmalayeri
Arshia Soltani Moakhar
Arman Zarei
Reihaneh Zohrabi
M. T. Manzuri
M. Rohban
OODD
26
14
0
30 Sep 2022
Generalizability of Adversarial Robustness Under Distribution Shifts
Generalizability of Adversarial Robustness Under Distribution Shifts
Kumail Alhamoud
Hasan Hammoud
Motasem Alfarra
Bernard Ghanem
OOD
43
8
0
29 Sep 2022
Extremely Simple Activation Shaping for Out-of-Distribution Detection
Extremely Simple Activation Shaping for Out-of-Distribution Detection
Andrija Djurisic
Nebojsa Bozanic
Arjun Ashok
Rosanne Liu
OODD
152
146
0
20 Sep 2022
Diffusion Models for Adversarial Purification
Diffusion Models for Adversarial Purification
Weili Nie
Brandon Guo
Yujia Huang
Chaowei Xiao
Arash Vahdat
Anima Anandkumar
WIGM
195
410
0
16 May 2022
Evaluating the Adversarial Robustness of Adaptive Test-time Defenses
Evaluating the Adversarial Robustness of Adaptive Test-time Defenses
Francesco Croce
Sven Gowal
T. Brunner
Evan Shelhamer
Matthias Hein
A. Cemgil
TTA
AAML
170
67
0
28 Feb 2022
Generalized Out-of-Distribution Detection: A Survey
Generalized Out-of-Distribution Detection: A Survey
Jingkang Yang
Kaiyang Zhou
Yixuan Li
Ziwei Liu
171
870
0
21 Oct 2021
Open-Set Recognition: a Good Closed-Set Classifier is All You Need?
Open-Set Recognition: a Good Closed-Set Classifier is All You Need?
S. Vaze
Kai Han
Andrea Vedaldi
Andrew Zisserman
BDL
161
401
0
12 Oct 2021
On the Importance of Gradients for Detecting Distributional Shifts in
  the Wild
On the Importance of Gradients for Detecting Distributional Shifts in the Wild
Rui Huang
Andrew Geng
Yixuan Li
173
324
0
01 Oct 2021
MLP-Mixer: An all-MLP Architecture for Vision
MLP-Mixer: An all-MLP Architecture for Vision
Ilya O. Tolstikhin
N. Houlsby
Alexander Kolesnikov
Lucas Beyer
Xiaohua Zhai
...
Andreas Steiner
Daniel Keysers
Jakob Uszkoreit
Mario Lucic
Alexey Dosovitskiy
239
2,554
0
04 May 2021
ImageNet-21K Pretraining for the Masses
ImageNet-21K Pretraining for the Masses
T. Ridnik
Emanuel Ben-Baruch
Asaf Noy
Lihi Zelnik-Manor
SSeg
VLM
CLIP
160
676
0
22 Apr 2021
RepVGG: Making VGG-style ConvNets Great Again
RepVGG: Making VGG-style ConvNets Great Again
Xiaohan Ding
X. Zhang
Ningning Ma
Jungong Han
Guiguang Ding
Jian-jun Sun
117
1,484
0
11 Jan 2021
RobustBench: a standardized adversarial robustness benchmark
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
213
668
0
19 Oct 2020
Robust Out-of-distribution Detection for Neural Networks
Robust Out-of-distribution Detection for Neural Networks
Jiefeng Chen
Yixuan Li
Xi Wu
Yingyu Liang
S. Jha
OODD
144
83
0
21 Mar 2020
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
L. V. D. van der Maaten
Kilian Q. Weinberger
PINN
3DV
244
35,884
0
25 Aug 2016
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
250
5,813
0
08 Jul 2016
1