ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.17335
  4. Cited By
A Thorough Performance Benchmarking on Lightweight Embedding-based Recommender Systems

A Thorough Performance Benchmarking on Lightweight Embedding-based Recommender Systems

25 June 2024
Hung Vinh Tran
Tong Chen
Quoc Viet Hung Nguyen
Zi-Rui Huang
Lizhen Cui
Hongzhi Yin
ArXivPDFHTML

Papers citing "A Thorough Performance Benchmarking on Lightweight Embedding-based Recommender Systems"

5 / 5 papers shown
Title
MultiBiSage: A Web-Scale Recommendation System Using Multiple Bipartite
  Graphs at Pinterest
MultiBiSage: A Web-Scale Recommendation System Using Multiple Bipartite Graphs at Pinterest
Saket Gurukar
Nikil Pancha
Andrew Zhai
Eric Kim
Samson Hu
Srinivas Parthasarathy
Charles R. Rosenberg
J. Leskovec
54
13
0
21 May 2022
Sparsity in Deep Learning: Pruning and growth for efficient inference
  and training in neural networks
Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks
Torsten Hoefler
Dan Alistarh
Tal Ben-Nun
Nikoli Dryden
Alexandra Peste
MQ
128
679
0
31 Jan 2021
Learnable Embedding Sizes for Recommender Systems
Learnable Embedding Sizes for Recommender Systems
Siyi Liu
Chen Gao
Yihong Chen
Depeng Jin
Yong Li
52
70
0
19 Jan 2021
Learning to Embed Categorical Features without Embedding Tables for
  Recommendation
Learning to Embed Categorical Features without Embedding Tables for Recommendation
Wang-Cheng Kang
D. Cheng
Tiansheng Yao
Xinyang Yi
Ting-Li Chen
Lichan Hong
Ed H. Chi
LMTD
CML
DML
31
67
0
21 Oct 2020
Categorical Reparameterization with Gumbel-Softmax
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
69
4,781
0
03 Nov 2016
1