ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.00488
  4. Cited By
PFME: A Modular Approach for Fine-grained Hallucination Detection and
  Editing of Large Language Models

PFME: A Modular Approach for Fine-grained Hallucination Detection and Editing of Large Language Models

29 June 2024
Kunquan Deng
Zeyu Huang
Chen Li
Chenghua Lin
Min Gao
Wenge Rong
    KELM
ArXivPDFHTML

Papers citing "PFME: A Modular Approach for Fine-grained Hallucination Detection and Editing of Large Language Models"

2 / 2 papers shown
Title
Understanding Factuality in Abstractive Summarization with FRANK: A
  Benchmark for Factuality Metrics
Understanding Factuality in Abstractive Summarization with FRANK: A Benchmark for Factuality Metrics
Artidoro Pagnoni
Vidhisha Balachandran
Yulia Tsvetkov
HILM
215
305
0
27 Apr 2021
A Token-level Reference-free Hallucination Detection Benchmark for
  Free-form Text Generation
A Token-level Reference-free Hallucination Detection Benchmark for Free-form Text Generation
Tianyu Liu
Yizhe Zhang
Chris Brockett
Yi Mao
Zhifang Sui
Weizhu Chen
W. Dolan
HILM
217
143
0
18 Apr 2021
1