ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.03428
  4. Cited By
NEBULA: Neural Empirical Bayes Under Latent Representations for
  Efficient and Controllable Design of Molecular Libraries

NEBULA: Neural Empirical Bayes Under Latent Representations for Efficient and Controllable Design of Molecular Libraries

3 July 2024
E. Nowara
Pedro H. O. Pinheiro
Sai Pooja Mahajan
Omar Mahmood
Andrew Watkins
Saeed Saremi
Michael R. Maser
    BDL
    DiffM
ArXivPDFHTML

Papers citing "NEBULA: Neural Empirical Bayes Under Latent Representations for Efficient and Controllable Design of Molecular Libraries"

5 / 5 papers shown
Title
Score-based 3D molecule generation with neural fields
Score-based 3D molecule generation with neural fields
Matthieu Kirchmeyer
Pedro H. O. Pinheiro
Saeed Saremi
DiffM
43
0
0
15 Jan 2025
Geometric Latent Diffusion Models for 3D Molecule Generation
Geometric Latent Diffusion Models for 3D Molecule Generation
Minkai Xu
Alexander Powers
R. Dror
Stefano Ermon
J. Leskovec
DiffM
AI4CE
48
133
0
02 May 2023
Zero-Shot Text-to-Image Generation
Zero-Shot Text-to-Image Generation
Aditya A. Ramesh
Mikhail Pavlov
Gabriel Goh
Scott Gray
Chelsea Voss
Alec Radford
Mark Chen
Ilya Sutskever
VLM
253
4,764
0
24 Feb 2021
Learning a Continuous Representation of 3D Molecular Structures with
  Deep Generative Models
Learning a Continuous Representation of 3D Molecular Structures with Deep Generative Models
Matthew Ragoza
Tomohide Masuda
D. Koes
DiffM
MedIm
65
31
0
17 Oct 2020
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
219
1,332
0
12 Feb 2018
1