ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.04811
  4. Cited By
Simplifying Deep Temporal Difference Learning

Simplifying Deep Temporal Difference Learning

5 July 2024
Matteo Gallici
Mattie Fellows
Benjamin Ellis
B. Pou
Ivan Masmitja
Jakob Foerster
Mario Martin
    OffRL
ArXivPDFHTML

Papers citing "Simplifying Deep Temporal Difference Learning"

11 / 11 papers shown
Title
Plasticine: Accelerating Research in Plasticity-Motivated Deep Reinforcement Learning
Plasticine: Accelerating Research in Plasticity-Motivated Deep Reinforcement Learning
Mingqi Yuan
Qi Wang
Guozheng Ma
Bo-wen Li
Xin Jin
Yunbo Wang
Xiaokang Yang
Wenjun Zeng
D. Tao
OffRL
AI4CE
33
0
0
24 Apr 2025
Residual Policy Gradient: A Reward View of KL-regularized Objective
Pengcheng Wang
Xinghao Zhu
Yuxin Chen
Chenfeng Xu
M. Tomizuka
Chenran Li
34
0
0
14 Mar 2025
Hyperspherical Normalization for Scalable Deep Reinforcement Learning
Hyperspherical Normalization for Scalable Deep Reinforcement Learning
Hojoon Lee
Youngdo Lee
Takuma Seno
Donghu Kim
Peter Stone
Jaegul Choo
63
1
0
24 Feb 2025
Improving Value-based Process Verifier via Structural Prior Injection
Improving Value-based Process Verifier via Structural Prior Injection
Zetian Sun
Dongfang Li
Baotian Hu
Jun Yu
Min-Ling Zhang
35
0
0
21 Feb 2025
Stabilizing Reinforcement Learning in Differentiable Multiphysics Simulation
Stabilizing Reinforcement Learning in Differentiable Multiphysics Simulation
Eliot Xing
Vernon Luk
Jean Oh
82
0
0
16 Dec 2024
Streaming Deep Reinforcement Learning Finally Works
Streaming Deep Reinforcement Learning Finally Works
Mohamed Elsayed
G. Vasan
A. R. Mahmood
OffRL
35
4
0
18 Oct 2024
SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement
  Learning
SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning
Hojoon Lee
Dongyoon Hwang
Donghu Kim
Hyunseung Kim
Jun Jet Tai
K. Subramanian
Peter R. Wurman
Jaegul Choo
Peter Stone
Takuma Seno
OffRL
57
6
0
13 Oct 2024
Can Learned Optimization Make Reinforcement Learning Less Difficult?
Can Learned Optimization Make Reinforcement Learning Less Difficult?
Alexander David Goldie
Chris Xiaoxuan Lu
Matthew Jackson
Shimon Whiteson
Jakob N. Foerster
37
3
0
09 Jul 2024
Disentangling the Causes of Plasticity Loss in Neural Networks
Disentangling the Causes of Plasticity Loss in Neural Networks
Clare Lyle
Zeyu Zheng
Khimya Khetarpal
H. V. Hasselt
Razvan Pascanu
James Martens
Will Dabney
AI4CE
53
30
0
29 Feb 2024
Atari-5: Distilling the Arcade Learning Environment down to Five Games
Atari-5: Distilling the Arcade Learning Environment down to Five Games
Matthew Aitchison
Penny Sweetser
Marcus Hutter
37
19
0
05 Oct 2022
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
273
2,878
0
15 Sep 2016
1